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Abstract
We present a rigorous derivation of a real-space full-potential multiple scattering theory
(FP-MST) that is free from the drawbacks that up to now have impaired its development (in
particular the need to expand cell shape functions in spherical harmonics and rectangular
matrices), valid both for continuum and bound states, under conditions for space partitioning
that are not excessively restrictive and easily implemented. In this connection we give a new
scheme to generate local basis functions for the truncated potential cells that is simple, fast,
efficient, valid for any shape of the cell and reduces to the minimum the number of spherical
harmonics in the expansion of the scattering wavefunction. The method also avoids the need for
saturating ‘internal sums’ due to the re-expansion of the spherical Hankel functions around
another point in space (usually another cell center). Thus this approach provides a
straightforward extension of MST in the muffin-tin (MT) approximation, with only one
truncation parameter given by the classical relation lmax = k Rb, where k is the electron
wavevector (either in the excited or ground state of the system under consideration) and Rb is
the radius of the bounding sphere of the scattering cell. Moreover, the scattering path operator
of the theory can be found in terms of an absolutely convergent procedure in the lmax → ∞
limit. Consequently, this feature provides a firm ground for the use of FP-MST as a viable
method for electronic structure calculations and makes possible the computation of x-ray
spectroscopies, notably photo-electron diffraction, absorption and anomalous scattering among
others, with the ease and versatility of the corresponding MT theory. Some numerical
applications of the theory are presented, both for continuum and bound states.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

At its most basic, multiple scattering theory (MST) is a
technique for solving a linear partial differential equation
over a region of space with certain boundary conditions. It
is implemented by dividing the space into non-overlapping
domains (cells), solving the differential equation separately
in each of the cells and then assembling together the partial
solutions into a global solution that is continuous and smooth

across the whole region and satisfies the given boundary
conditions.

As such, MST has been applied to the solution of
many problems drawn both from classical as well as
quantum physics, ranging from the study of membranes and
electromagnetism to the quantum-mechanical wave equation.
In quantum mechanics it has been widely used to solve
the Schrödinger equation (SE) (or the associated Lippmann–
Schwinger equation (LSE)) both for scattering and bound
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states. It was proposed originally by Korringa and by Kohn
and Rostoker (KKR) as a convenient method for calculating
the electronic structure of solids [1, 2] and was later extended
to polyatomic molecules by Slater and Johnson [3]. A
characteristic feature of the method is the complete separation
between the potential aspect of the material under study,
embodied in the cell scattering power, from the structural
aspect of the problem, reflecting the geometrical position of
the atoms in space.

Applications of the KKR method were first made within
the so-called muffin-tin (MT) approximation for the potential.
In this approximation the potential is confined within non-
overlapping spheres, where it is spherically symmetrized, and
takes a constant value in the interstitial region. Moreover,
although spherical symmetry is not formally necessary, the
condition that the bounding spheres do not overlap was thought
to be necessary for the validity of the theory. Despite this
approximation the method is complicated and demanding from
a numerical point of view and as a band structure method it
was therefore superseded by more efficient linearized methods,
such as the linearized muffin-tin-orbital method (LMTO) [4]
and the linearized augmented-plane-wave method (LAPW) [5].

Full-potential versions of these band methods have also
been introduced in recent years. However, none of these
methods can match the power and versatility of a full-potential
method based on the formalism of MST, either in terms of
providing a complete solution of the SE or in the range of
problems that could be treated. In particular, none of these
methods leads easily to the construction of Green’s function
(GF) which is indispensable in the study of a number of
properties of many physical systems.

Due to these reasons, in the last two decades, the KKR
method has experienced a revival in the framework of Green’s
function method (KKR-GF). Indeed, due to the introduction
of the complex energy integration, it was found that the
method is well suited for ground state calculations, with an
efficiency comparable to typical diagonalization methods. A
host of problems became tractable in this way, ranging from
solids with reduced symmetry (like, for example, isolated
impurities in ordered crystal, surfaces, interfaces, layered
systems, etc) to randomly disordered alloys in the coherent
potential approximation (CPA).

At the same time it soon became clear that the MT
approximation was not adequate for the treatment of systems
with reduced symmetry or for the calculation of lattice forces
and relaxation. In order to deal with these problems a number
of groups developed a full-potential (FP) KKR-GF method,
obtaining very good results, comparable to the full-potential
LAPW method (FLAPW), for what concerns total energy
calculations, lattice forces and relaxation around an impurity
([6–10] and references therein). Due to their method of
generating the single site solutions and the cell t-matrix, the
additional numerical effort required for the implementation of
the FP-MS scheme scales only linearly with the number of
nonequivalent atoms and is not significantly greater than in the
MT case.

In this development the authors took an empirical attitude
towards some fundamental problems related to the extension

of MST to the full-potential case, like the strongly debated
question of the l convergence of the theory or the need to
converge ‘internal’ sums arising from the re-expansion of
the free Green function around two sites, which entails the
unwanted feature of the introduction of rectangular matrices
into the theory [11]. Without getting involved in ab initio
questions, they just use square matrices for the structural Green
function Gnn′

L L ′(E) needed to calculate Green’s function of the
system (see, e.g., equations (6) and (9) in [9]) and truncate the
l expansion to lmax = 3 or 4, obtaining in this way the same
accuracy as the FLAPW method.

Some observations are in order at this point. First, the FP
method in the framework of MST has been initially developed
only for periodic systems in two or three dimensions and for
states below the Fermi level. To our knowledge, its extension
to treat bound and continuum states of polyatomic molecules
and, in general, real-space applications of the method have
progressed very slowly and have been scarce. Secondly, the
generation of the local solutions of the SE with truncated cells
in the FP extension of the MST has up to now involved the
expansion of the cell shape function in spherical harmonics,
which might create convergence problems, as discussed below.
Thirdly, the FP extension of MST has generated a lot of
controversies that have gone on for more than 30 years [12].
Some of the problems have found a solution and we refer
the reader to the book by Gonis and Butler [13] for a
comprehensive review of the state of the art in this field (in
particular see their chapter 6). However, questions like the l
convergence of the theory or the use of square matrices are still
a matter of debate and some rigorous answers should be given
to them.

As mentioned above, applications to states well above
the Fermi energy, as required in the simulations of x-ray
spectroscopies, like absorption, photo-emission, anomalous
scattering, etc, have been scarce. In the words of [13], ‘the
feeling that one should calculate the “near-field corrections”
(NFC), coupled with the need to solve a fairly complicated
system of coupled differential equations to determine the
local (cell) solutions (based on the phase function method)
has contributed greatly to the slow development of a FP
method based on MST’. It was only after it was realized that
NFC are not necessary and a new method to generate local
solutions was found that progress became faster, at least in
the calculation of the electronic structure of solids ([6–10]
and references therein). The only remaining drawback was,
and is, the truncation of the potential at the cell boundary
which is still performed via a shape function expanded in
spherical harmonics. Added to this there is the feeling
that one should still converge the ‘internal’ sums leading to
the use of rectangular matrices in the angular momentum
(AM) indices, although this last step is sometimes ignored
without justification. Last, but not least, the question of the
l convergence of the theory remains unsettled.

For all these reasons FP codes based on MST for the
calculation of x-ray spectroscopies are not very numerous.
We mention here the work by Huhne and Ebert [14] on
the calculation of x-ray absorption spectra using the FP
spin-polarized relativistic MST and that of Ankudinov and
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Rehr [15] in the scalar relativistic approximation. These
authors use the potential shape function to generate the local
basis functions which are at the heart of MST. The expansion of
the shape function and the cell potential in spherical harmonics
leads to a high number of spherical components in the coupled
radial equations that become progressively cumbersome to
handle and time-consuming with increasing energy and in the
absence of symmetry. This feature might also be at the origin
of another problem related to the saturation of ‘internal’ sums
in the MSE [13], as discussed later in this paper. Moreover no
critical discussion is devoted in their work to the l-convergence
problems of MST or the use of square matrices in the theory.

Another code based on a version of the MST that uses non-
overlapping spherical cells and treats the interstitial potential
in the Born approximation is that of Foulis et al [16, 17].
This method, however, treats in an approximate way the
potential in the interstitial region and moreover loses one of the
major advantages of the MST, namely the separation between
dynamics and geometry in the solution of the scattering
problem. Foulis [18] is now developing an exact FP-MS
scheme based on distorted waves in the interstitial region that
seem to be promising, but its numerical implementation is still
to come.

There are other codes that simulate x-ray spectroscopies
and are not based on MST: that of Joly [19] is based on
the discretization of the Laplacian in three dimensions (finite
difference method (FDM)), where the SE is solved in a
discretized form on a three-dimensional grid, the values of
the scattering wavefunction being the unknowns. This method
is, however, limited to cluster sizes of the order of 20 atoms
(without symmetry), due to the high memory requirement
when the number of mesh points increases with the dimensions
of the cluster. Finally a method based on the pseudo-potential
theory to calculate x-ray absorption is worth mentioning [20].
It can easily cope with clusters of many atoms (300 and
more) with a computational effort that scales linearly with the
number of atoms. One of its drawbacks is its little physical
transparency and the fact that it has been applied only to
calculate x-ray absorption spectra. Also, relaxation around the
core hole must be taken into account by super-cell calculations
and there is little flexibility to deal with energy-dependent
complex potentials.

The purpose of the present paper is the rigorous derivation
of a real-space FP-MST, valid both for continuum and bound
states, that is free from the drawbacks hinted at above, in
particular the need to use cell shape functions and rectangular
matrices, under conditions for space partitioning that are
not excessively restrictive and easily implemented (see the
beginning of section 3). In connection with this we shall
present a new scheme to generate local basis functions for the
truncated potential cells that is simple, fast, efficient, valid for
any shape of the cell and reduces to the minimum the number
of spherical harmonics in the expansion of the scattering
wavefunction. Finally we shall also address the problem of
the l convergence of the theory, giving a positive answer to this
debated question.

Even though this work is primarily motivated by
applications in spectroscopy, it will be clear from the context

that bound states can be treated as well. Actually the method
can also work for complex energy values, so that one can
take advantage of the fact that the solution of the Schrödinger
equation is analytical in the energy plane, as is the associated
Green function, except for cuts and poles on the real axis.
Therefore spectroscopy is only one regime of applications.

Section 2 of this paper presents the new scheme to
generate local basis functions and tests it against known
solutions for potentials cells with and without shape truncation.
Section 3 provides a new derivation of the FP-MST that allows
us to work with square matrices for the phase functions SL L ′

and EL L ′ and for the cell TL L ′ matrix with only one truncation
parameter, contrary to the presently accepted view [13]. Due
to their importance in the theory, various equivalent forms for
Green’s function are presented in this scheme. This latter
is extended to the calculation of bound states of polyatomic
molecules and tested against the known eigenvalues of the
hydrogen molecular ion. Section 4 discusses the strongly
debated problem of the l convergence of the theory and
provides a truncation procedure that converges absolutely in
the lmax → ∞ limit.

Section 5 reports one additional application of the present
FP-MS theory besides those already presented in [21, 22],
namely the calculation of the absorption cross section in the
case of linear molecules (Br2 diatomic molecule), where the
improvement over the MT approximation is quite dramatic.
Moreover, with an eye to using the theory to study the
performance of model optical potentials, section 5 also
presents a preliminary application of the non-MT (NMT)
approach to the study of the relative performance of the Hedin–
Lundqvist (HL) and the Dirac–Hara (DH) potentials in the case
of a transition metal. Finally section 6 presents the conclusions
of the present work. A preliminary and partial account of this
latter has been presented in [21, 22].

2. Local basis functions for single truncated potential
cells

A characteristic feature of MST is that it does not rely on a
finite basis set for the expansion of the global wavefunction
inside each cell as all other methods of electronic structure
calculations do. Instead, it relies on expanding the global
solution in terms of local solutions of the Schrödinger equation
at the energy of interest, which can be regarded as an
optimally small, energy adapted basis set [9]. Therefore it
is essential for the practical implementation of the theory to
devise an efficient numerical method to generate them. We
shall consider Williams and Morgan (WM) basis functions
�L(r) [23] which are local solutions of the SE inside each cell
and behave at the origin as JL(r) for r → 0. Throughout
this paper we shall use real spherical harmonics and shall put
for short JL (r; k) ≡ jl(kr)YL(r̂), NL (r; k) ≡ nl(kr)YL(r̂)
and H̃ +

L (r; k) ≡ −ikh+
l (kr)YL(r̂), where jl, nl , hl denote

respectively spherical Bessel, Neumann and Hankel functions
of order l. The truncated cell potential V (r, r̂) is defined
to coincide with the global system potential inside the cell
and to be equal to zero (or to a constant) outside. As
mentioned in section 1 we want to avoid the expansion of the
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truncated cell shape function (or equivalently of the truncated
potential) in spherical harmonics due to convergence problems.
However we observe that, even if the potential has a step,
the wavefunction and its first derivative are continuous, so
that its angular momentum expansion is well behaved and
even converges uniformly in r̂ [24]. Therefore we can safely
write �L(r) = ∑

L ′ RL ′ L(r)YL ′(r̂) and this expression can be
integrated term by term under the integral sign.

2.1. Three-dimensional Numerov method

In order to generate the basis functions we write the SE in polar
coordinates for the function PL (r) = r�L(r):

[
d2

dr 2
+ E − V (r, r̂)

]

PL (r, r̂) = 1

r 2
L̃2 PL(r, r̂) (1)

where L̃2 is the angular momentum operator, whose action on
PL(r, r̂) can be calculated as

L̃2 PL (r, r̂) =
∑

L ′
l ′(l ′ + 1)r RL ′ L(r)YL ′(r̂). (2)

Equation (1) in the variable r looks like a second-order
equation with an inhomogeneous term. Accordingly we use
Numerov’s method to solve it. As is well known, putting
f L
i, j = PL(ri , r̂ j ) and dropping for simplicity the index L, the

associated three-point recursion relation is

Ai+1, j fi+1, j − Bi, j fi, j + Ai−1, j fi−1, j = gi, j − h6

240
f vi
i, j (3)

where,

Ai, j = 1 − h2

12
vi, j Bi, j = 2 + 5h2

6
vi, j = 12 − 10Ai, j

vi, j = V (ri , r̂ j )− E

gi, j = h2

12
[qi+1, j + 10qi, j + qi−1, j ]

qi, j = 1

r 2
i

∑

L ′
l ′(l ′ + 1)ri RL ′ L(ri )YL ′(r̂ j ).

(4)
Here i is an index of radial mesh and j an index of angular
points on a Lebedev surface grid [25]. Obviously ri RL ′L (ri) =∑

j w j PL (ri , r̂ j )YL ′(r̂ j ), where w j is the weight function for
angular integration associated with the chosen grid. The
number of surface points NLeb is given by NLeb ≈ (2lmax +
1)2/3 as a function of the maximum angular momentum
used [26], taking into account that one integrates the product of
two spherical harmonics. As it is, we cannot use equation (3) to
find fi+1, j by iteration, from the knowledge of fi, j and fi−1, j

at all the angular points, since the ‘inhomogeneous’ term qi+1, j

is not expressible in terms of fi+1, j due to the last line of
equations (4) and is calculated at the radial mesh point i + 1.

We first eliminate this point from the expression of gi, j ,
observing that

gi, j = h2

12
[qi+1, j + 10qi + qi−1, j ]

= h2

12

[
qi+1, j − 2qi + qi−1, j

h2
h2 + 12qi, j

]

. (5)

The second-order central difference is given by [27]

qi+1 − 2qi + qi−1 = h2q ′′
i + h4

12
q iv

i + h6

360
qvi

i

+ h8

20 160
qviii

i + · · · (6)

so that

gi, j ∼ h2

12

[(

q ′′
i, j + h2

12
q iv

i, j

)

h2 + 12qi, j

]

(7)

omitting errors of order h6 and higher.

Now for the second derivative q ′′
i, j we use the backward

formula [27]

q ′′
i, j = qi, j − 2qi−1, j + qi−2, j

h2
+ hq ′′′

i, j − 7h2

12
q iv

i, j (8)

to avoid the contribution of the point i + 1. Inserting
equation (8) into (7)

gi, j ∼ h2

12
[13qi, j − 2qi−1, j + qi−2, j ] + h5

12
q ′′′

i, j − h6

24
q iv

i, j (9)

which is the formula we wanted to arrive at. Therefore our
modified Numerov procedure becomes

Ai+1, j fi+1, j − Bi, j fi, j + Ai−1 fi−1, j = gi, j + h5

12
q ′′′

i, j (10)

where

Ai, j = 1 − h2

12
pi, j Bi, j = 2 + 5h2

6
pi, j = 12 − 10Ai, j

gi, j = h2

12
[13qi, j − 2qi−1, j + qi−2, j ]

(11)
which now needs three backward points to start.

The appearance of the third r derivative of q ′′′
i in

equation (10), which is strictly infinite at the step point,
does not cause practical problems. Although not necessary,
one can always assume a smoothing of the potential at the
cell boundary à la Becke [28], reducing at the same time
the mesh h, so that the error at that particular step point is
negligible.

In this way, at the cost of a bigger error O(h5) compared
to the original Numerov formula and the introduction of a
further backward point (three points i , i − 1 and i − 2 are now
involved in (11)), the three-dimensional discretized equation
can be solved along the radial direction for all angles in an
onion-like way, provided the expansion (2) is performed at
each new radial mesh point to calculating qi, j . We use a log–
linear mesh ρ = αr +β ln r to reduce numerical errors around
the origin and the bounding sphere [29].
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2.2. Matrix Numerov method

It is well known that errors in the Numerov difference equation
originating from the unidimensional differential equation

[
d2

dr 2
+ E − l(l + 1)

r 2
− V (r)

]

Pl(r) = 0 (12)

grow exponentially when E − l(l + 1)/r 2 − V (r) � 0.
Therefore near the origin and in general for large r meshes
and/or high l values the method is not suitable. This is also true
for equation (1). To avoid this problem we use the so-called
Gaussian elimination for the difference equation [30–32]. We
notice that in the MT sphere lying inside the cell the AM
expansion of the potential is regular and in general only a
few multipoles are appreciable. Therefore, by projecting onto
YL(r̂) we can rewrite equation (1) as [33]
(

− d2

dr 2
+ l(l + 1)

r 2
− E

)

X L L ′(r)

+
∫

dr̂ YL(r̂)V (r)PL ′ (r) = 0 (13)

i.e.
∑

L ′′

[(

− d2

dr 2
+ l(l + 1)

r 2
− E

)

δL L ′′ + VL L ′′(r)
]

X L ′ L ′′(r)

= F(r)X̃(r) = 0 (14)

where X L L ′(r) = r RL L ′(r), X̃ is its transposed

VL L ′(r) = VL ′L (r) =
∫

dr̂ YL (r̂)V (r)YL ′(r̂) (15)

and

(F(r))L L ′ = (F(r))L ′L

=
[(

− d2

dr 2
+ l(l + 1)

r 2
− E

)

δL L ′ + VL L ′(r)

]

. (16)

Equation (14) is a system of coupled radial Schrödinger
equations in matrix form that can be solved simultaneously for
all L, L ′ components with appropriate initial conditions.

The Numerov recursion relation for the matrix SE [33] is
(notice the change of sign of the coefficient B for the sake of
later convenience)

Ai+1X̃i+1 + Bi X̃i + Ai−1X̃i−1 = 0 (17)

Ai = 1 − h2

12
Pi − Bi = 2 + 5h2

6
Pi = 12 − 10Ai

(Pi)L L ′ = VL L ′(ri )+
[

l(l + 1)

r 2
i

− E
]

δL L ′

(18)
where i is the generic point of the radial mesh. Its explicit
matrix form is
⎛

⎜
⎜
⎝

A0 B1 A2 O
A1 B2 A3

. . .
. . .

. . .

O AM−1 BM AM+1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

X̃0

X̃1
...

X̃M+1

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0
0
...

0

⎞

⎟
⎟
⎠ . (19)

Since the regular solution has the boundary condition,
X0 = 0 we can rewrite this latter equation as
⎛

⎜
⎜
⎝

B1 A2 O
A1 B2 A3

. . .
. . .

. . .

O AM−1 BM

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

X̃1

X̃2
...

X̃M

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0
0
...

−AM+1X̃M+1

⎞

⎟
⎟
⎠ . (20)

This set of equations can be solved by performing forward
Gaussian elimination near the origin [30–32]:
⎛

⎜
⎜
⎜
⎜
⎝

D1 A2 O
D2 A3

. . .
. . .

DM−1 AM

O DM

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

X̃1

X̃2
...

X̃M−1

X̃M

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
...

0
−AM+1X̃M+1

⎞

⎟
⎟
⎟
⎟
⎠

(21)

with

D1 = B1,

D2 = B2 − A1D−1
1 A2,

. . . ,

Di = Bi − Ai−1D−1
i−1Ai , (i = 1, . . . ,M)

(22)

constituting a set of forward recurrence relations for the
quantities Di . In terms of these latter we finally obtain the
following recurrence relations:

X̃i = −D−1
i Ai+1X̃i+1, (i = 1, . . . ,M) (23)

the solution of which can be calculated backward starting from
X̃M+1 = I, modulo a constant normalization matrix. As will
be clear from the following, this initial matrix in practice will
not be needed. Summarizing, our strategy to generate the
cell basis functions PL (r) = r�L(r) is the following. In a
spherical domain around the origin, inside which there are no
discontinuities of the potential, we use the matrix Numerov
method with Gaussian elimination (GE), since we can expand
the potential in a well-behaved series of spherical harmonics.
We use the GE method to avoid the well-known instability
of the Numerov recursion relation near the origin when the
angular momentum l is high, as mentioned above. As boundary
conditions we use X̃0 = 0 at the origin and X̃M+1 = I at
the radius of the sphere, which is usually taken to coincide
with the MT sphere inscribed in the cell. We then take
the last three points of the solution so obtained to start the
3d modified Numerov procedure outward across the potential
discontinuity up to the cell bounding sphere. Since the local SE
we are dealing with is a homogeneous equation, its solution is
determined up to an arbitrary normalization constant (reflected
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Figure 1. Real and imaginary part of the numerical solution of the
SE along the z direction for the separable truncated potential given in
the text, compared to the analytical one.

in the second arbitrary condition X̃M+1 = I ). For the basis
functions PL(r) we never need such a constant, since only
ratios of these functions appear in MS theory, as is clear in the
following. Instead, when we compare with a definite solution,
like in figures 1 and 2 below, we need to provide the value
of this solution at another point, usually the radius of the

sphere. This means taking a value for X̃M+1 appropriate for
this solution.

It is also clear that the method can also be applied to
generate by inward integration the irregular solutions needed
to calculate Green’s function.

This procedure is quite efficient and was tested against
analytically solvable, separable model potentials, with and
without shape truncation, obtaining very good results. In [22]
we have shown the comparison between the analytical solution
and the numerical one for certain directions in the special
case of the truncated potential V (x, y, z) = aθ(|x | − Rc) +
bθ(|y|− Rc)+cθ(|z|− Rc), where θ is the step function, Rc =
3.78 au = 2.0 Å and a = −0.05, b = −0.1, c = −0.15 Ryd,
for an energy E = 0.3 Ryd. For this comparison we used an
lmax = 7 and a number of surface points on the Lebedev grid
equal to 266.

Figure 1 shows the same comparison in the more stringent
case of a discontinuity of the order of 1 Ryd. We took indeed
a = −0.5, b = −1.0, c = −1.5 Ryd for E = 0.3 Ryd. In this
case, along the z direction, one can even observe a kink in the
curvature of the solution, which is well reproduced and related
to the discontinuity of the second derivative at the truncation
value of Rc = 2.0 Å. As expected, for good agreement we
had to increase lmax up to 11 and take a number of Lebedev
points equal to 1454. Notice here that the numerical method to

Figure 2. Comparison of the particular Mathieu function described in the text with the one generated by matrix and 3d Numerov method at
four different angles. The switch radius was at 2.45 au.
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generate the solution is really three-dimensional and does not
take advantage of the separability of the analytical one. For
this comparison we used the matrix Numerov method with GE
up to Rc = 2.0 Å = 3.78 au, then switched to 3d Numerov.
Due to the high potential step in this case, we took a number N
of radial mesh points given by N = 834.

In order to test the reliability of the method also in the case
of a potential which is not truncated but varies substantially
in sign and magnitude inside the defining region, we show
in figure 2 the same comparison for the Mathieu functions,
solution of the separable SE with periodic boundary conditions

[
d2

dx2
+ d2

dy2
+ d2

dz2

]

ψ(x, y, z) = (−ax − ay − az

+ 2qx cos 2x + 2qy cos 2y + 2qz cos 2z)ψ(x, y, z) (24)

for the case where

qx = 1.0, ax = −0.455 139,

parity = even, period = π

qy = 0.3, ay = −0.044 566,

parity = even, period = π

qz = 1.0, az = +1.859 110,

parity = even, period = 2π.

The energy eigenvalue is E = 1.359 405, lmax = 20 and
the number of surface points is given by 1730. For the
convenience of the reader the Mathieu functions are described
in appendix A. The number of radial mesh points was equal
to 250. Also in this case we employed both methods of
integration with a switch radius of 2.45 au.

In general the minimum number of surface points
is chosen according to the rule that to integrate exactly∫

d
 YL(
) we need ≈(l + 1)2/3 points [25]. If we want to
integrate the product of two spherical harmonics, l should be
the sum of the individual ls; the same for a product of three, etc.
So for the 3d Numerov we need to integrate only a product of
two functions whose expansions are both truncated to a certain
lmax. Ttherefore the number of points is (2lmax+1)2/3, whereas
for the truncated separable potential and the Mathieu functions
we have the product of three functions (one for each space
coordinate), so we need (3lmax + 1)2/3 points. Moreover for
the matrix Numerov method we again have (3lmax + 1)2/3 due
to the calculation of VL L ′ .

2.3. A linear–logarithmic mesh

To solve equation (1) by the Numerov procedure, there are
several choices for the radial mesh. Due to the singularity of
the potential near the origin we found that the best strategy in
our case was to take a mixed logarithmic and linear mesh, as
usual in atomic physics [29, 30, 32]. For non-MT calculations,
especially with truncated potential, this mesh is the appropriate
choice. In this case the new radial variable is

ρ(r) = αr + β ln r (25)

with α and β constant. A constant mesh size of ρ can be taken
in the interval ρ0 � ρ � ρN . The initial value of ρ0 is chosen

according to the empirical formula

ρ0 = −β(10 + ln Z) (26)

whereas the final ρ is defined as

ρN = ρ0 + Nh (27)

so that α is given by

α = (ρN − β ln rN )/rN (28)

taking β , the mesh size h and the number of points N as input
values. In the calculation of local basis functions we choose
rN equal to the radius of the cell bounding sphere Rb, β = 1.0
and put N ≈ 100Rb. Instead for figures 1 and 2 we took
respectively β = 0.67 and β = 0.05. The value of r = r(ρ)
corresponding to a given value of ρ can be readily found by
application of the Newton technique [32].

Following the change of variable in equation (25) the SE
in equation (14) becomes F(ρ)Y(ρ) = 0, where

(F(ρ))L L ′ =
[{

− d2

dρ2
+
(

α + β

r

)−2

×
(

l(l + 1)+ β(αr + β/4)(αr + β)−2

r 2
− E

)}

δL L ′

+
(

α + β

r

)−2

VL L ′(r)

]

Y(ρ) =
√

α + β

r
X(r) (29)

where r = r(ρ). The same, mutatis mutandis, applies to
equation (1) for the three-dimensional Numerov method.

A comment is in order at this point. Strictly speaking,
by changing to the log–linear mesh the equations (18)–(23)
are not valid anymore, since r = 0 cannot be realized (it
would correspond to ρ = −∞) and therefore not explicitly
implemented as a boundary condition. By working out again
the Gaussian elimination process when X0 is not zero, one
arrives at the same equations (22), except that in the rhs term
the zero of the i th row is replaced by Ai−1 D−1

i−1 A0Y0, where Y0

is the value of (29) calculated at the first point ρ0. Now

YL L ′(ρ) =
√

α + β

r(ρ)
X L L ′(r(ρ))

= √
αr(ρ)+ β

√
r(ρ)RL L ′(r(ρ)). (30)

Since at the origin RL L ′ is diagonal in l and behaves like a
spherical Bessel function,

√
r(ρ)RL L(r(ρ)) is of the order of

10−3 for l = 0 at ρ0 ≈ 10−5, 10−8 for l = 1, etc. We
can therefore take Y0 = 0 and use the simplified Gaussian
elimination formulae equations (18)–(23). We checked that
this is a good approximation also for l = 0.

3. Multiple scattering method for scattering and
bound states

3.1. Scattering states

We begin by presenting the derivation of MSE for scattering
states. In this case we seek a solution of the SE continuous

7
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in the whole space with its first derivatives, satisfying the
asymptotic boundary condition

ψ(r; k) 	
(

k

16π3

) 1
2
[

eik·r + f (r̂; k)
eikr

r

]

(31)

where k is the photo-electron wavevector and f (r̂; k) is
the scattering amplitude. The factor (k/(16π3))

1
2 takes into

account the normalization of the scattering states to one state
per Ryd. In the spirit of MST we partition the space in
terms of non-overlapping space-filling cells 
 j with surfaces
Sj and centers at R j . Accordingly we partition the overall
space potential V (r) into cell potentials, such that V (r) =∑

j v j (r j ), where v j (r j ) takes the value of V (r) for r inside
cell j and vanishes elsewhere. As is clear from the following
the zero value of the potential outside the cell is not necessary
and can be replaced by any constant. The results will not
depend on this particular value. Here and in the following r j =
r−R j . The partition is assumed to satisfy the requirement that
the shortest inter-cell vector Ri j = Ri − R j joining the origins
of the nearest-neighbor cells i and j , is larger than any intra-
cell vector ri or r j , when r is inside cell i or cell j . If necessary,
empty cells can be introduced to satisfy this requirement. We
also assume that there exists a finite neighborhood around the
origin of each cell lying in the domain of the cell [12]. We then
start from the following identity involving surface integrals in
dr̂ ≡ dσ :

N∑

j=1

∫

S j

[G+
0 (r

′ − r; κ)∇ψ(r; k)− ψ(r; k)

× ∇G+
0 (r

′ − r; κ)] · n j dσ j =
∫

So

[G+
0 (r

′ − r; κ)

× ∇ψ(r; k) − ψ(r; k)∇G+
0 (r

′ − r; κ)] · no dσo. (32)

Here 
o = ∑
j 
 j , with surface So, centered at the origin o

and G+
0 (r

′ − r; κ) is the free Green function with outgoing
wave boundary conditions satisfying the equation (∇2 +
κ2)G+

0 (r
′ − r; κ) = δ(r′ − r), where κ2 = E − V0 and V0

is an arbitrary constant equal to the assumed value of the cell
potential outside the cell domain. The identity (32) is valid
for all r′ lying in the neighborhood of the origin of each cell,
since in this case the integrands are continuous with their first
derivatives. In this context we shall use two distinct k-vectors,
defined respectively as k = √

E and κ = √
E − V0. This latter

will appear in the expansion of Green’s function G+
0 (r

′ − r; κ)

by spherical functions [16]. Obviously k = κ for V0 = 0.
Equation (32), with the choice V0 = 0, can also be derived

from the Lippmann–Schwinger equation

ψ(r′; k) = eik·r′ +
∫

G+
0 (r

′ − r; k)V (r)ψ(r; k) d3r (33)

satisfied by the scattering state (see appendix C). However we
prefer to start from the identity equation (32) to take advantage
of the arbitrariness of the constant V0. For the convenience of
the reader we recall the expansions [13]

eik·r = 4π
∑

L

i lYL (k̂)JL(r; k) (34)

G+
0 (r

′ − r; κ) = − 1

4π

eiκ|r′−r|

|r′ − r| = G+
0 (r

′
i − ri ; κ)

=
∑

L

JL (r′
i; κ)H̃ +

L (ri ; κ) (r ′
i < ri) (35)

=
∑

L

JL(ri ; κ)H̃ +
L (r

′
i ; κ) (r ′

i > ri ). (36)

Notice for future reference that in the case κ = 0 the
solid spherical harmonics JL(r; κ) and H̃ +

L (r; κ) are to be
understood as J̄L (r) = r l YL(r̂)/(2l + 1) and H̄L(r) =
r−l−1YL (r̂), due to the well-known expansion

1

|r − r′| =
∑

L

4π

2l + 1

r l
<

r l+1
>

YL (r̂)YL (r̂′) (37)

which is the κ → 0 limit of equations (35) and (36).
The heart of MST is the introduction of the functions

�L(r j ; k)which inside cell j are local solutions of the SE with
potential v j (r j) behaving as JL(r j ; k) for r j → 0. They form
a complete set of basis functions such that the global scattering
wavefunction can be locally expanded as [12]

ψ(r j ; k) =
∑

L

A j
L(k)�L (r j ; k) (38)

where we have underlined the k dependence of �L(r j ; k)
through its behavior at the origin.

In order to find the asymptotic behavior in the outer region
C
o we introduce the scattering functions in response to an
exciting wave of angular momentum L:

ψL(ro; k) = JL(ro; k)

+
∫

G+
0 (ro − r′

o; k)V (r′
o)ψL (r′

o; k) d3r ′
o. (39)

Then, under the assumption of short range potentials
(i.e. potentials that behave like 1/r 1+ε with positive ε at great
distances), letting ro → ∞ and using expansion equation (36)
in equation (39) we find

ψ(ro; k) =
∑

L

Ão
L(k)

[

JL(ro; k)+
∑

L ′
H̃ +

L ′(ro; k)

×
∫

JL ′(r′
o; k)V (r′

o)ψL (r′
o; k) d3r ′

o

]

(40)

=
∑

L

Ão
L(k)

[

JL(ro; k)+
∑

L ′
H̃ +

L ′(ro; k)T o
L ′L

]

(41)

where, in order to impose the asymptotic behavior in
equation (31), Ão

L = ilYL(k̂)(k/π)1/2 and T o
L L ′ is the T -matrix

for the whole cluster, equal to

T o
L ′ L =

∫

JL ′(ro; k)V (ro)ψL (ro; k) d3ro. (42)

In general for short range potentials decaying slowly, the
asymptotic behavior in equation (41) is reached only at great
distance from the origin of the coordinates (usually at the
center of the atomic cluster under study). In order to limit
the number of cells, so that the surface So just surrounds the
cluster, we introduce the local solution

�L(ro; k) =
∑

L ′
Ro

L ′L (ro)YL ′(r̂o) (43)

8
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in the outer region C
o, which can be obtained by inward
integration of the SE starting from the appropriate asymptotic
value H̃ +

L ′(ro; k). Therefore we take here

ψ(ro; k) =
∑

L

[ Ão
L(k)JL(ro; k)+�L (ro; k)Ao

L(k)]. (44)

Notice that the function �L (ro; k) in equation (43) (and
consequently Ro

L ′L(ro)) is complex, unlike the functions
�L(ri ; k) that can be taken real, if the potential is real. If
the potential has a Coulomb tail, the spherical Bessel and
Hankel functions should be replaced by the corresponding
regular and irregular solutions FL(ro; k) and GL(ro; k) of the
radial SE with a Coulomb potential. Due to the possibility
that the optical potential used for calculating the spectroscopic
response functions be complex, it should be clear from the
context that the formalism works also for complex energies
and/or potentials. The extension to complex energies will
come in very handy when exploiting the analytic properties of
Green’s function.

Insertion of the expressions equations (38) and (44)
into the identity equation (32) provides a set of algebraic
equations (known as MSE) that determine the expansion
coefficients A j

L(k) and the Ao
L(k) in such a way that the

local representations are smoothly continuous across the
common boundary of contiguous cells. Indeed, taking r′ in
the neighborhood of the origin of cell i �= o, using the
expansion equation (35) (since r is confined to lie on the cell
surfaces), and putting to zero the coefficients of JL(r′

i ; κ) due
to their linear independence, we readily arrive at the MST
compatibility equations for the amplitudes A j

L(k) and Ao
L ′(k):

∑

j L ′
H i j

L L ′ A
j
L ′(k) =

∑

L ′
[Mio

L L ′ Ão
L ′(k)+ Nio

L L ′ Ao
L ′(k)] (45)

where

H i j
L L ′ =

∫

S j

[H̃ +
L (ri ; κ)∇�L ′(r j ; k)

− �L ′(r j ; k)∇ H̃ +
L (ri ; κ)] · n j dσ j

Mio
L L ′ =

∫

So

[H̃ +
L (ri ; κ)∇ JL ′(ro; k)

− JL ′(ro; k)∇ H̃ +
L (ri ; κ)] · no dσo

Nio
L L ′ =

∫

So

[H̃ +
L (ri; κ)∇�L ′(ro; k)

− �L ′(ro; k)∇ H̃ +
L (ri ; κ)] · no dσo.

A further set equations is obtained by taking r′ inside
the outer region C
o, using the expansion equation (36)
(remembering that ro < r′

o, since ro lies on So). By putting
to zero the coefficients of H̃ +

L (r
′
o; κ) we obtain

∑

j L ′
K oj

L L ′ A
j
L ′(k) =

∑

L ′
[M̃oo

L L ′ Ão
L ′(k)+ Ñoo

L L ′ Ao
L ′(k)] (46)

where

K oj
L L ′ =

∫

S j

[JL(ro; κ)∇�L ′(r j; k)

− �L ′(r j ; k)∇ JL(ro; κ)] · n j dσ j

M̃oo
L L ′ = δL L ′

∫

So

[JL(ro; κ)∇ JL ′(ro; k)

− JL ′(ro; k)∇ JL(ro; κ)] · no dσo

Ñoo
L L ′ =

∫

So

[JL(ro; κ)∇�L ′(ro; k)

− �L ′(ro; k)∇ JL(ro; κ)] · no dσo.

From the above derivation it is clear that the set of
equations in equations (45) and (46) determines the amplitudes
A j

L(k) and Ao
L(k) independently of the constant V0, since the

identity equation (32) is valid whatever V0. In general this will
be true only if the L expansion is not truncated, whereas there
will be a more or less pronounced dependence according to the
degree of convergence of the truncated expansion. In general,
the lesser the potential jump at the boundaries of the various
cells the faster the convergence.

Notice that these equations remain valid, with no
restriction on the sums over L, even in the case κ = 0,
provided JL and H̃L are replaced by J̄L and H̄L , due to the
expansion equation (37) of the zero energy limit of the free
Green function.

The usual derivation of the MSE now proceeds by re-
expanding H̃ +

L (ri ; κ) and JL(ro; κ) around the center j under
the geometrical conditions stated at the beginning of this
section, by use of the equations [13, 16]

H̃ +
L (ri ; κ) =

∑

L ′
Gi j

L L ′ JL ′(r j ; κ) (Ri j > r j) (47)

JL(ro; κ) =
∑

L ′
J oj

L L ′ JL ′(r j; κ) (no cond.) (48)

H̃ +
L (ri ; κ) =

∑

L ′
J io

L L ′ H̃ +
L ′(ro; κ) (ro > Rio) (49)

where Gi j
L L ′ are the free electron propagator in the site and

angular momentum basis (KKR real space structure factors)
given by

Gi j
L L ′ = 4π

∑

L ′′
C(L, L ′; L ′′)il−l′+l′′ H̃ +

L ′′(Ri j; κ) (50)

and J i j
L L ′ is the translation operator

J i j
L L ′ = 4π

∑

L ′′
C(L, L ′; L ′′)il−l′+l′′ JL ′′(Ri j; κ). (51)

In these formulae the quantities C(L, L ′; L ′′) are the real basis
Gaunt coefficients given by

C(L, L ′; L ′′) =
∫

YL(
)YL ′(
)YL ′′(
) d
. (52)

In the following we shall also need the quantity

Ni j
L L ′ = 4π

∑

L ′′
C(L, L ′; L ′′)il−l′+l′′ NL ′′ (Ri j; κ). (53)

Unfortunately the re-expansion equations (47)–(49)
introduce further expansion parameters into the theory (with
related convergence problems) that are actually unnecessary,
as shown below.

9
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We observe in fact that the integrals over the surfaces
of the various cells j can be calculated over the surfaces
of the corresponding bounding spheres (with radius R j

b ) by
application of Green’s theorem, since both H̃ +

L (r; κ) and
�L(r; k) satisfy the Helmholtz equation (∇2 + κ2)F(r) = 0
outside the domain of the cell. We then use the following
relations:

∫

S j

YL ′(r̂ j )H̃
+
L (ri ; κ) dσ j = (R j

b )
2Gi j

L L ′ jl′(κR j
b ) (54)

∫

S j

YL ′(r̂ j)∇ H̃ +
L (ri ) · n j dσ j = (R j

b )
2Gi j

L L ′
d

dR j
b

jl′(κR j
b )

(55)
which are exact for all L provided |ri − r j | = Ri j > r j for
r lying on the surface Sj . This is a consequence of the fact
that under this condition the series in equation (47) converges
absolutely and uniformly in the entire angular domain, as
shown in appendix B, equation (B.7), and can therefore be
integrated term by term. This property is also true for the series
derived with respect to r. Even though not necessary, we also
checked the numerical equality of both sides of equations (54)
and (55) for various values of L, L ′.

Similarly, since the series in equation (49) converges uni-
formly and absolutely, as shown in appendix B, equation (B.8),
we also find

∫

So

YL ′(r̂o)H̃
+
L (ri ; κ) dσ j = (Ro

b)
2 J io

L L ′ h̃+
l′ (κRo

b) (56)

∫

So

YL ′(r̂o)∇ H̃ +
L (ri )·n j dσ j = (Ro

b)
2 J io

L L ′
d

dRo
b

h̃+
l′ (κRo

b) (57)

provided Rio < Ro
b , where Ro

b is the bounding sphere of the
outer region C
o. Therefore Ro

b should be bigger than any Rio.
Finally, due to the absolute and uniform convergence of

the series in equation (48) without conditions, we find the
following relations:

∫

S j

YL ′(r̂ j )JL(ri ; κ) dσ j = (R j
b )

2 J i j
L L ′ jl′(κR j

b ) (58)

∫

S j

YL ′(r̂ j )∇ JL (ri) ·n j dσ j = (R j
b )

2 J i j
L L ′

d

dR j
b

jl′(κR j
b ). (59)

By inserting in equation (45) the expression for the basis
functions expanded in spherical harmonics (we shall suppress
the site indices whenever a relation refers to both sites i and
site o):

�L(r; k) =
∑

L ′
RL ′ L(r)YL ′(r̂) (60)

remembering that this expansion is uniformly convergent in the
angular domain [24] and using the relations equations (54)–
(59) we finally obtain, under the partitioning conditions
specified at the beginning of section 3:

∑

L ′
Ei

L L ′ Ai
L ′(k)+

j �=i∑

j,L ′,L ′′
Gi j

L L ′′ S
j
L ′′ L ′ A

j
L ′(k)

=
∑

L ′
J io

L L ′

[

Moo
L ′ L ′ Ão

L ′(k)+
∑

L ′′
Eo

L ′L ′′ Ao
L ′′(k)

]

(61)

where we have put Eo
L ′L ′′ ≡ Noo

L ′ L ′′ , the quantities Moo
L L

and Noo
L ′ L ′′ being the same as those following equation (45),

calculated with ri replaced by ro.
Similarly, putting So

L L ′ ≡ Ñoo
L L ′ , for equation (46) we find

j �=o∑

j,L ′,L ′′
J oj

L L ′′ S
j
L ′′ L ′ A

j
L ′(k) =

∑

L ′
[M̃oo

L L ′ Ão
L ′(k)δL L ′+So

L L ′ Ao
L ′(k)].

(62)
In the above equations we have defined the quantities

EL L ′ = (Rb)
2W [−iκh+

l , RL L ′ ] (63)

SL L ′ = (Rb)
2W [ jl, RL L ′ ] (64)

for the cells 
 j and for the outer region C
o. The Wronskians
W [ f, g] = f g′−g f ′ are calculated at R j

b and Ro
b , respectively,

and reduce to diagonal matrices for MT potentials.
Equations (61) and (62) look formally similar to the

usual MSE. However, we notice that, due to the relations
equations (54)–(59), there are only two expansion parameters
in the theory. They are related to the AM components of RL ′ L
in the expansion equation (60) in cell j and in the outer region
C
o. No convergence constraints related to the re-expansion
of the various spherical Bessel and Hankel functions around a
different origin equations (47)–(49) are present.

It is interesting to note that the truncation value for both
indices is the same and corresponds to the classical relation
lmax = k R j

b , where R j
b is the radius of the bounding sphere of

the cell at site j . This is true for the index L, which reminds us
that the basis function�L is normalized like jl(kr)YL near the
origin. Due to the properties of the spherical Bessel functions,
when l � k R j

b , �L becomes very small inside the cell,
decreasing like [(2l + 1)!!]−1. Therefore his weight in the
expansion equation (60) will be negligible. The other index
L ′, as will be clear from the following, measures the response
of the truncated potential inside the cell to an incident wave
JL ′ of angular momentum L ′. Due to the same argument as
above, familiar to scattering theory, the scattering matrix T j

L ′L
will decrease like [(2l + 1)!!(2l ′ + 1)!!]−1 (see equation (B.10)
in appendix B for l, l ′ � k R j

b ). As a consequence E j and
S j can be considered square matrices. In the case of the outer
sphere region C
o, the situation is inverted, the index L being
related to the response of the entire cluster to an incident wave
of angular momentum L, whereas the index L ′ corresponds to
the number of AM waves mixed in by the potential not only
inside 
o but also in C
o. The two indices have the same
truncation lmax = k R̃o

b , provided we take R̃o
b as the radius of the

sphere that contains the region of space where the potential is
substantially different from zero. This conclusion is reinforced
by the observation that one can cover this same region by
empty cells.

Up to this point we have assumed that V0 �= 0 and derived
consequently the MSE, having in mind the possibility to check
the rate of convergence of the L expansion. However, in
the continuum case one usually works under the assumption
that V0 = 0. In this case equations (61) and (62) simplify
considerably in the case of short range potentials. Since now

10
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k = κ , we use the relation
∫

So

[H̃ +
L ′(ro; k)∇ JL(ro; k)− JL (ro; k)∇ H̃ +

L ′(ro; k)] · n j dσo

= −δL L ′ (65)

so that in equation (61) Moo
L L = −1, and in equation (62)

M̃oo
L L = 0. Moreover one easily finds that

∑

L ′
Ão

L ′(k)J io
L L ′ = i lYL (k)eik·Rio

√
k

π
= I i

L (k) (66)

which is obtained from equation (51) by observing that
∑

L ′
C(L, L ′; L ′′)YL ′(
) = YL(
)YL ′′(
).

Then the two sets of equations assume the simpler form

∑

L ′
Ei

L L ′ Ai
L ′(k)+

j �=i∑

j,L ′,L ′′
Gi j

L L ′′ S
j
L ′′ L ′ A

j
L ′(k)

−
∑

L ′ L ′′
J io

L L ′ Eo
L ′L ′′ Ao

L ′′(k) = −I i
L(k) (67)

j �=o∑

j,L ′,L ′′
J oj

L L ′′ S
j
L ′′ L ′ A

j
L ′(k)−

∑

L ′
So

L L ′ Ao
L ′(k) = 0. (68)

The fact that E and S can be taken to be square matrices leads
to another interesting form of the MSE. Under the assumption
that Det S �= 0, we can introduce new amplitudes

BL(k) =
∑

L ′
SL L ′ AL ′(k) (69)

which is equivalent to using new basis functions �̄L related to
�L by the relation

�̄L =
∑

L ′
(S̃−1)L L ′�L ′ (70)

where S̃ is the transpose of the matrix S.
Defining the quantities

(T i )−1 = −Ei(Si )−1 (71)

T̄ o = −Eo(So)−1 (72)

(notice the asymmetry between sites i and site o) we can write
equations (67) and (68) as

∑

L ′
(T i)−1

L L ′ Bi
L ′(k)−

j �=i∑

j,L ′
Gi j

L L ′ B
j
L ′(k)

−
∑

L ′ L ′′
J io

L L ′ T̄ o
L ′L ′′ Bo

L ′′(k) = I i
L(k) (73)

j �=o∑

j,L ′
J oj

L L ′ B
j
L ′(k)− Bo

L(k) = 0. (74)

The meaning of the amplitudes BL(k) is immediately found
from these equations if we consider only a single truncated
potential at center i . In this case T̄ o ≡ 0, since now the
asymptotic behavior is given by equation (41), and Bo

L(k) ≡
Ao

L(k) = ∑
L ′ T o

L L ′ Ão
L ′ , where T o

L L ′ is the T -matrix of the
potential. Therefore equations (73) and (74) tell us that T i

L L ′ ≡

T o
L L ′ . As a consequence Bi

L(k) is the scattering amplitude of
angular momentum L in response to an exciting plane wave
of wavevector k. Moreover, we find that T i = −Si (Ei)−1

is symmetric in the AM indices (remember that we use a real
spherical harmonics basis), a fact already known from general
scattering theory. This is a consequence of the fact that SE−1

is a symmetric matrix [34].
In the case of many cells, it is expedient to work

only in terms of the cell amplitudes Bi
L ′(k). Inserting into

equation (73) the expression for Bo
L ′(k) given by equation (74)

we obtain

∑

L ′
(T i)−1

L L ′ Bi
L ′(k)−

j �=i∑

j,L ′
Gi j

L L ′ B
j
L ′(k)

−
∑

j L ′

∑

��′
J io

L�T̄ o
��′ J

oj
�′ L ′ B

j
L ′(k) = I i

L(k). (75)

Introducing τ , the inverse of the multiple scattering matrix
M ≡ T −1 − G − J T̄ o J :

τ = (T −1 − G − J T̄ o J )−1 (76)

known as the scattering path operator [13], we derive from
equation (75) that

Bi
L(k) =

∑

j L ′
τ

i j
L L ′ I

j
L ′(k). (77)

If we insert this expression in equation (74) and remember that
by definition Bo

L(k) = ∑
L ′ T o

L L ′ Ão
L ′ , we easily find for the

cluster T -matrix

T o
L L ′ =

∑

i j

∑

��′
J oi

L�τ
i j
��′ J

jo
�′ L ′ . (78)

Since the matrices G and J are also symmetric (see definition
equations (50) and (51)), we find that τ is likewise symmetric,
implying the symmetry of T o

L ′L , again in keeping with
scattering theory. This quantity represents indeed for the
whole cluster the scattering amplitude into a spherical wave
of angular momentum L in response to an exciting wave of
AM L ′ and is needed, for example, in electron molecular
scattering [33]. Finally equation (77) shows that the quantities
Bi

L(k) are scattering amplitudes for the cluster, for which the
generalized optical theorem holds (for real potentials) [33, 16]
(see appendix D):

∫

dk̂ Bi
L(k)[B j

L ′(k)]∗ = − 1

π
Im τ i j

L L ′ . (79)

This relation is very important, since it establishes the
connection between the photo-emission and the photo-
absorption cross section, as shown in appendix E. As it will
turn out, − Im τ ii

L L is proportional to the L-projected density of
states onto site i .

In the case of one single cell located at site i , by
construction the solutions inside and outside the cell are
continuously smooth so that, remembering that by definition
T i

L L ′ ≡ T o
L L ′ , for ri = ro = Ri

b we have, neglecting for

11
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simplicity from now on the k dependence of the local solutions

∑

L

Bi
L(k)�̄L(ri ) =

∑

L

Ão
L(k)

×
[

JL(ro; k)+
∑

L ′
H̃ +

L ′(ro; k)T i
L ′L

]

. (80)

Using equation (77) for a single site and equating the
coefficients of Ão

L(k) we find at the bounding sphere the
relation

∑

L ′
�̄L ′(ri )T

i
L ′L =

∑

L ′
(Ẽ)−1

L L ′�L ′

≡ �-- L

= JL(ro; k)+
∑

L ′
H̃ +

L ′(ro; k)T i
L ′L (81)

implying that the basis functions �-- L are scattering functions,
obeying the Lippmann–Schwinger equation for the cell
potential. Therefore, introducing new expansion coefficients
CL(k) such that locally

ψ(r; k) =
∑

L

CL(k)�-- L (r) (82)

and repeating the steps leading to the MSE in this new basis,
we obtain

Ci
L(k)−

j �=i∑

j,L ′L ′′
Gi j

L L ′′ T
j

L ′′L ′ C
j
L ′(k)−

∑

L ′
J io

L L ′ Co
L ′(k) = I i

L (k)

(83)
j �=o∑

j,L ′L ′′
J oj

L L ′′ T
j

L ′′ L ′C
j
L ′(k) =

∑

L ′
(T̄ o)−1

L L ′ Co
L ′(k). (84)

Comparing these equations with the previous ones in
equations (73), (74) and (67), (68) we immediately find the
relations

B j
L(k) =

∑

L ′
T j

L L ′C
j
L ′(k) (85)

Bo
L(k) =

∑

L ′
(T̄ o)−1

L L ′ Co
L ′(k) (86)

CL (k) =
∑

L ′
EL L ′ AL ′(k). (87)

In the present approach, the three forms of pair of
equations (67) and (68), (73) and (74), and (83) and (84) are
equivalent and lead to the same result.

The pair of equations (83) and (84) are quite important,
since they provide the formal justification that in MST one
can work with square matrices, provided that the only indices
appearing in the theory are those of the radial functions
RL L ′(r). This is a consequence of the relation (B.9) of
appendix B (second equation) and the fact that the matrix
elements TL L ′ have a common truncation parameter lmax. In
fact, since Tr(T †T ) < ∞ due to the asymptotic behavior
of the TL L ′ matrix elements given by equation (B.10) in the
same appendix, one can safely define an inverse for the matrix
TL L ′(E) (except at poles on the negative energy axis) and
pass from one representation to the other. In particular, one
can pass from the set (83) and (84) to the set (67) and (68).

In the traditional derivation of MS equations, that does not
rely on the relations (54)–(59) but hinges on the re-expansion
formulae (47)–(49), this equivalence does not hold. In fact,
the need to saturate the ‘internal’ sum over L ′′ coming from
the re-expansion introduces a further expansion parameter and
therefore rectangular matrices into the theory. This feature
makes it impossible to define a T -matrix and to write a closed
form for the GF, losing all the advantages of MST over other
methods. This drawback has been avoided in our approach,
since in each step of the derivation of the MS equations we have
shown that the introduction of summation indices other than
those present in the radial functions RL ′ L(r) is unnecessary.

Another useful consequence of the fact that the theory
can be cast in terms of square matrices is the possibility to
exploit the point symmetry of the cluster under study. Even
though many authors have treated the problem of how to
symmetrize the MSE, this was done in the framework of the
MT theory, where the cell T -matrices are diagonal in the AM
indices. New features appear in the more general case (in
particular, how to calculate the symmetrized version of the TL L ′

matrices) and appendix F deals with this situation. Needless to
say, we checked in all applications that the symmetrized and
unsymmetrized versions of the theory gave the same results.
The application of the symmetrization procedure to Green’s
functions or to periodic systems is rather straightforward.

As already anticipated in section 1, one of the major
advantages of MST is the direct access to Green’s function
of the system. Having explicit expressions for this quantity is
of the utmost importance both for writing down spectroscopic
response functions (see [35]) and for the calculation of ground
state properties through contour integration in the complex
energy plane (see, e.g., [9] and references therein).

The GF is solution of the Schrödinger equation with a
source term

(∇2 + E − V (r))G(r, r′; E) = δ(r − r′). (88)

In the framework of MST and for general (possibly
complex) potentials, the solution of this equation in the case
of a finite cluster can be written as [13, 36]

G(ri , r′
j ; E) = 〈�̄(ri )|(τ i j − δi j T i)|�̄(r′

j )〉
+ δi j〈�̄(r<)|T i |�(r′

>)〉 (89)

where r< (r>) indicates the lesser (the greater) between ri and
r ′

i . The function �(r) is the irregular solution in cell i that
matches smoothly to H̃ +

L ′(r) at Ri
b. In short we have saturated

the sum over the angular momentum indices using a bra and
ket notation, (e.g.)

〈�̄(ri )|τ i j |�̄(r′
j )〉 =

∑

L L ′
�̄L(ri )τ

i j
L L ′�̄L ′(r′

j). (90)

Moreover, for simplicity of presentation we have assumed no
contribution from the outer region potential (i.e. T̄ o ≡ 0)
allowing empty cells to cover the volume 
o up to the point
at which the asymptotic behavior in equation (41) starts to
be valid. The modifications needed in the case T̄ o �= 0 are
obvious. In the case of a crystal we have to work in Fourier
space [9].
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Now, from equation (81) written as

�̄L(ri ) =
∑

L ′
JL ′(ro; k)(T −1)iL ′ L + H̃ +

L (ro; k) (91)

by continuity we derive inside cell i the relation

�-- L(ri ) =
∑

L ′
�L ′(ri; k)(T −1)iL ′ L +�L(ri; k) (92)

where �L ′(ri ) is the irregular function joining smoothly to
JL ′(ro; k) at Ri

b. Therefore, Green’s function takes the form

G(ri , r′
j ; E) = 〈�̄(ri )|τ i j |�̄(r′

j )〉−δi j〈�̄(r<)|�(r′
>)〉. (93)

For real potentials, both �̄L and �L are real, so that the
singular atomic term does not contribute to the imaginary part
of the GF. In this case the quantity − Im

∫

i

G(r, r; E) d3r =
−∑

L Im τ i i
L L(E)

∫

i
�̄2

L(r) d3r is the projected density of
states on site i at energy E , expressed as a sum of the
partial densities of type L. This relation (not r-integrated)
constitutes the basis for calculating the system density by
contour integration in the complex energy plane.

Alternative forms of the GF that are independent of the
normalization of the local solutions �L(ri ) can be easily
obtained in terms of the S and E matrices. For example, we
have

G(ri , r′
j ; E) = −〈�(ri )|{([S̃E + S̃GS]−1)i j

− δi j([S̃E]−1)i i }|�(r′
j)〉 − δi j〈�(r<)|E−1|�(r′

>)〉 (94)

which is seen to reduce to the following expression,
remembering the definition of |�-- 〉:
G(ri , r′

j ; E) = 〈�-- (ri )|([I − GT ]−1G)i j |�-- (r′
j)〉

− δi j〈�-- (r<)|�(r′
>)〉. (95)

Indeed from the relation

(A + B)−1 − A−1 = (A + B)−1(A − (A + B))A−1

= −(A + B)−1 B A−1

= −(B−1 A + 1)−1 A−1

= −(AB−1 A + A)−1 (96)

we find

[S̃E + S̃GS]−1 − [S̃E]−1 = −[S̃E + S̃E[S̃GS]−1 S̃E]−1

= −[S̃E + S̃E[GS]−1 E]−1

= −E−1[S̃ + S̃E[GS]−1]−1

= −E−1[S̃ + Ẽ S[GS]−1]−1

= E−1[T − G−1]−1 Ẽ−1

= − E−1[I − GT ]−1G Ẽ−1 (97)

taking into account that S̃ E = Ẽ S and T = −SE−1 =
−Ẽ−1 S̃. All these forms are equivalent as long as we can treat
the matrices S and E as square.

3.2. Bound states

Even though the essential of this section has been presented
in a conference proceedings [22], we feel that for the sake of
completeness of presentation and convenience of the reader it
should be repeated here.

The MSE in the case of bound states can be derived
from those for scattering states, by simply eliminating the
exciting plane wave in equation (33) and taking the analytical
continuation to negative energies in the free Green function
G+

0 (r
′ − r; k), in order to impose the boundary condition of

decaying waves when r ′ → ∞. In this case the Lippmann–
Schwinger equation reduces to the eigenvalue equation

ψ(r′) =
∫

G+
0 (r

′ − r; k)V (r)ψ(r) d3r (98)

where we have dropped the label k in the wavefunction ψ(r′).
Since the expansion of G+

0 (r
′ − r; k) in terms of spherical

Bessel and Hankel functions in equations (35) and (36) remain
valid under the analytical continuation to negative energies, so
that k = √

E = i
√|E | = iγ , we see that ψ(r′) behaves like

eikr ′
/r ′ = e−γ r ′

/r ′ for r ′ → ∞. We remind ourselves that

h+
l (kr) = −i−l K 1

l (γ r); h−
l (kr) = −i−l(−1)l K 2

l (γ r)

jl(kr) = il Il(γ r); nl(kr) = il+1 (−1)l+1 K 1
l + K 2

l

2
(99)

where Il is the modified Bessel and K 1
l , K 2

l the modified
Hankel functions of first and second kind, respectively. Not
only the expansions in equations (35) and (36), but also the re-
expansion relations in equations (47)–(49) remain valid under
analytical continuation with the same convergence properties
(see appendix B). This fact implies that we can derive the MSE
for bound states following the same patterns as for scattering
states, except that now the behavior of the wavefunction in the
outer region C
o is

ψ(ro) =
∑

L

Ao
L�

o
L(ro)

=
∑

L

Ao
L

∑

L ′
Ro

L ′ L(ro)YL ′(r̂o). (100)

The functions �o
L(ro) are now real and can easily be found

by inward integration in the outer region starting from an
asymptotic WKB solution properly normalized, e.g. like [(2l +
1)!!]−1.

Working with the BL amplitudes we easily arrive at the
following condition for the existence of a bound state:

∑

j L ′

{

(T i)−1
L L ′δi j − (1 − δi j)G

i j
L L ′ −

∑

L ′ L ′′
J io

L L ′ T̄ o
L ′L ′′ J

oj
L ′′ L ′

}

× B j
L ′ = 0 (101)

which is the same as equation (75), except that the exciting
plane wave term I i

L(k) and the k dependence have been
dropped. Notice that we have kept the arbitrariness of V0 in the
free Green function, in order to check that the eigenvalues do
not depend on it. In the spirit of the analytical continuation, we
have a definite rule on how to calculate the various quantities
as a function of κ .
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We now define

CL L ′ = (Rb)
2W [nl , RL L ′ ] (102)

so that, remembering equation (72)

κ−1(T j)−1 = (K j )−1 + i = −C j (S j )−1 + i (103)

κ−1T̄ o = K̄ o + i = −Co(So)−1 + i. (104)

Moreover we observe that

κ−1Gi j
L L ′ = Ni j

L L ′ − iJ i j
L L ′ (105)

where Ni j
L L ′ is defined in equation (53) and that

∑
L ′′ J io

L L ′′ J
oj
L ′′L ′

= J i j
L L ′ , since J is the translational operator. Substituting

these relations into equation (101) and eliminating the common
factor κ−1 we finally find

∑

j L ′

{

(K i )−1
L L ′δi j − (1 − δi j)N

i j
L L ′ −

∑

L ′L ′′
J io

L L ′ K̄ o
L ′ L ′′ J

oj
L L ′

}

× B j
L ′ = 0. (106)

The generic (L L ′)-element of this MS matrix is either real for
real κ (E − V0 > 0) or proportional to il−l′+1 for imaginary
κ (E − V0 < 0). Indeed, due to the relations equations (99),
putting for short Kl = [(−1)l+1 K 1

l + K 2
l ]/2, we easily find

that

NL L ′ = 4π il−l′+1
∑

L ′′
C(L, L ′; L ′′)(−1)l

′′

× Kl′′ (|κ |Ri j)YL ′′(Ri j)

(K i)−1
L L ′ = −il−l′+1[C-- i(S--

i )−1]L L ′

K̄ o
L L ′ = −il−l′+1[C-- o(S--

o)−1]L L ′

where C-- and S-- are defined in terms of the modified spherical
Bessel and Neumann functions as the corresponding quantities.

Therefore the condition for a bound state becomes
Det M-- = 0, where M-- is the MS matrix in equation (106)
after a unitary transformation that eliminates the imaginary
factors. In the practical numerical implementation we find the
zeros of the determinant of Det (K M-- ), excluding the spurious
solutions coming from the zeros of Det S-- . In this form, the
procedure is equivalent to finding the poles of the GF in the
form equation (95) on the real negative axis, as it should be.
Still numerical instabilities might come from the inverse of S--

o

present in the contribution of the outer sphere region. This
unwanted feature could be eliminated by working with the AL ,
instead of the BL amplitudes.

We applied the theory above to find the exact eigenvalues
of the hydrogen molecular ion, since this test is considered
rather stringent for the validity of the theory due to rapid
variation of the potential in the molecular region and to the
awkward geometry of the cells. In this case we partition
the space into three regions, as illustrated in figure 3: two
truncated spheres around the protons with a radius of 1.72 au
corresponding to cells 
I and 
II and an external region
labeled 
III, corresponding to the complementary domain
C
o. The bounding sphere of this latter is represented by
the dashed circle with radius 1.4 au, bigger than one-half the
distance of the protons, as discussed after equation (57). By

Figure 3. Partitioning of the space for the hydrogen molecular ion
with no empty cells.

calling the region outside this circle C
b, the potential is taken
to be zero (or constant) into the intersection of this domain with
cells 
I and 
II, and equal to the value of the true potential in
the intersection with C
o. We also did a calculation with the
two atomic cells, 22 empty cells surrounding them, plus an
external region.

It should be noticed that treatment of the bound state
is done here in analogy to the X-α MST method [3], since
we intend to put the theory to a severe test concerning
the independence of the eigenvalues from the value of the
interstitial constant V0 and the partitioning of the space.
More modern techniques that avoid finding eigenvalues and
eigenstates of the molecular cluster in the course of an SCF
iteration, exploit the analyticity of the GF through a contour
integration in the complex energy plane to find directly the
molecular density, as mentioned in the introduction and in
section 3.1.

Our findings are listed in table 1 and compared with the
exact results. The last two columns show the eigenvalues
obtained with two different values of V0, respectively equal
to −1.90 Ryd and 0, showing the ‘quasi-’independence of the
results from the constant interstitial value V0. The columns
with the label ‘22 EC’ refer to the calculation with two
atomic cells, 22 empty cells and an external region, showing
the ‘quasi-’independence of the result from the partitioning
mode of the space. We attribute the slight dependence of the
eigenvalues on V0 and the partitioning mode to the numerical
instabilities mentioned above and the L truncation of the
matrices.

The column labeled ‘Smith and Johnson’ refers to
the calculation by Smith and Johnson [37] in the MT
approximation, whereas the one labeled ‘Foulis’ quotes the
result by Foulis [34] obtained within the distorted wave
approximation.

4. Convergence of full-potential multiple scattering
theory

The inversion of the MS matrix becomes computationally
heavy at high photo-electron energies because of the large
number of angular momenta involved, since lmax ≈ k Rb. A
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Table 1. Eigenvalues of the hydrogen molecular ion (in Ryd).

Mol.
orb. n l m Exact Smith and Johnson [37] Foulis [34]

22 EC
V0 = −1.90

22 EC
V0 = 0

No EC
V0 = −1.90

No EC
V0 = 0

1a1g 1 0 0 −2.205 25 −2.071 6 −2.189 73 −2.205 22 −2.205 5 −2.2050 −2.204 8
2a1g 2 0 0 −0.721 73 −0.707 38 −0.720 93 −0.723 −0.724 −0.731 −0.726
3a1g 3 2 0 −0.471 55 −0.455 74 −0.471 02 −0.472 7 −0.478 −0.476 −0.474
4a1g 3 0 0 −0.355 36 −0.348 59 −0.355 25 −0.356 −0.355 0 −0.357 −0.356
1a2u 2 1 0 −1.335 07 −1.286 8 −1.334 26 −1.334 8 −1.334 8 −1.3342 −1.334 3
2a2u 3 1 0 −0.510 83 −0.497 22 −0.510 85 −0.510 72 −0.510 5 −0.5104 −0.510 4
3a2u 4 1 0 −0.274 63 −0.269 79 −0.274 66 −0.274 69 −0.274 2 −0.2745 −0.274 5
4a2u 4 3 0 −0.253 29 −0.249 97 −0.253 29 −0.254 −0.253 6 −0.2541 −0.253 01
1e1g 3 2 1 −0.453 40 −0.446 46 −0.453 33 −0.454 5 −0.453 32 −0.455 −0.455
1e1u 2 1 1 −0.857 55 −0.888 66 −0.855 85 −0.857 54 −0.856 1 −0.870 −0.858

common way to circumvent this difficulty is to invert the MS
matrix by series, whereby

(T −1 − G)−1 = T
∑

n

(GT )n . (107)

While this series is absolutely convergent for non-overlapping
MT spheres, provided the spectral radius of the matrix GT is
less than one [38], it is known to diverge for the case of space-
filling cells. This is easily seen by using the inequality (B.11)
in appendix B, putting l = l ′ � lmax, whereby

|Gll Tll | ≈ Rb

(
2Rb

Ri j

)2l+1

(108)

which signals the divergence of the matrix element (GT )ll (for
space-filling cells 2Rb > Ri j , at least for nearest neighbors).

However, due to the behavior shown by equation (108)
there is a widespread belief that the procedure of inverting
exactly an l truncated MS matrix and then letting l go to ∞
does not converge in the case of space-filling cells. We shall
show in the following that this is not so, provided a slight
modification of the free propagator G is adopted.

In order to illustrate our point, let us start by solving the
Lippmann–Schwinger equation using the theory of the integral
equations, before applying MST:

ψ(r′; k) = eik·r′ +
∫

G+
0 (r

′ − r; k)V (r)ψ(r; k) d3r . (109)

We cannot use the Fredholm theory, since the kernel for this
integral equation:

K(r′, r) = − 1

4π

eik·|r′−r|

|r′ − r| V (r) (110)

is such that

Tr(K†K) =
∫ ∫

dr dr′ K�(r′, r)K(r′, r)

=
(

1

4π

)2 ∫ ∫

dr dr′ V (r)2

|r′ − r|2

�
(

1

4π

)2 ∫ ∫

dr dr′ |V (r)|2
|r′ − r|2 (111)

and obviously diverges.

However, a solution for this problem can be found by the
following argument. We multiply the Lippmann–Schwinger
equation (109) by |V (r′)|1/2 and write V (r) = |V (r)|v(r),
where v(r) is a sign factor, equal to +1 where the potential
is positive and to −1 where it is negative. Then we obtain

ψs(r′; k) ≡ |V (r′)|1/2ψ(r′; k)

= |V (r′)|1/2eik·r′ + |V (r′)|1/2

×
∫

G+
0 (r

′ − r; k)|V (r)|1/2v(r)ψs(r; k) d3r . (112)

The kernel for this integral equation is given by

Ks(r′, r) = − 1

4π
|V (r′)|1/2 eik·|r′−r|

|r′ − r| |V (r)|
1/2v(r) (113)

whereby

Tr(K†
s Ks) =

∫ ∫

dr dr′ K�(r′, r)K(r′, r)

=
(

1

4π

)2 ∫ ∫

dr dr′ V (r)|V (r′)|
|r′ − r|2

�
(

1

4π

)2 ∫ ∫

dr dr′ |V (r)||V (r′)|
|r′ − r|2 (114)

which is finite for a large class of potentials (including the
molecular ones), so that the kernel Ks is of the Hilbert–Schmidt
type and the Fredholm theorem for L2 kernels can be applied.
Once the solutionψs(r′; k) is found, we can obtain the solution
of equation (109) simply by dividing it by |V (r′)|1/2, except at
points for which |V (r′)|1/2 = 0, where it can be defined by
continuity.

Now, let us apply MST to equation (109) using the
scattering wavefunctions �̄L(r) in equation (81) as local basis
functions. We transform this Lippmann–Schwinger equation
into a set of algebraic equations of infinite dimensions for the
coefficients CL (k) in the expansion (82)

Ci
L (k)−

j �=i∑

j,L ′L ′′
Gi j

L L ′′ T
j

L ′′ L ′C
j
L ′(k) = I i

L (k) (115)

where, in comparison with equation (83), for simplicity we
have neglected the outer region C
o, which we can always
assume to be covered by a set of empty cells. In matricial form
we have, putting K = GT and calling A the term in the rhs,

(I − K )C = A. (116)

15



J. Phys.: Condens. Matter 22 (2010) 185501 K Hatada et al

The matrix K here is not an operator of the Hilbert–Schmidt
type, since Tr(K † K ) diverges, due to equation (108) and
in keeping with equation (111). However, following the
procedure used above in passing from equation (109) to (112)
and introducing new vector components C ′ = T 1/2C with
a new inhomogeneous term A′ = T 1/2 A, we transform this
equation into a new one:

(I − Ks)C ′ = A′ (117)

where
Ks = T 1/2GT 1/2. (118)

The square root of the matrix T is defined in the usual way, by
first diagonalizing it with a similarity transformation S, taking
the square root of the diagonal elements and then performing
the same transformation on these letters. In formulae, if
� = ST S−1, then T 1/2 = S�1/2S−1, so that T 1/2T 1/2 = T .
There is no danger in performing these operations with the
infinite matrix T , since Tr(T †T ) < ∞, as can be seen from
the asymptotic behavior of its matrix element in appendix B,
equation (B.10). Hence the limiting procedures are well
defined.

By virtue of equation (114), appendix G shows that the
kernel Ks here is of the Hilbert–Schmidt type (i.e. Tr(K †

s Ks)

is finite). As is well known [39] this letter is the condition for
the existence of the determinant |I − Ks| necessary to define
its inverse, since by Hadamard’s inequality, for any finite Lmax,
one has

|I − Ks|2 � �
Lmax
L

(

1 +
Lmax∑

L ′
|(Ks)L L ′ |2

)

(119)

and in the limit Lmax → ∞ the infinite product will converge
if
∑

L L ′ |(Ks)L L ′ |2 ≡ Tr(K †
s Ks) � N < ∞ [40].

This means that the process of truncating the matrix I −
Ks to a certain lmax and then taking the inverse, converges
absolutely in the limit lmax → ∞. Once C ′ is obtained,
C = T −1/2C ′, thus solving the original problem. Moreover
the scattering path operator τ (76) is given by

τ = T 1/2(I − Ks)
−1T 1/2. (120)

There is another way to solve equation (117), by
expanding (I − Ks)

−1 in series, i.e. writing

(I − Ks)
−1 =

∑

n

(Ks)
n . (121)

However, even if the kernel Ks is of the Hilbert–Schmidt type
but Tr(K †

s Ks) � 1, the series diverges, whereas the process
of truncating and taking the inverse always converges. It goes
without saying that the series

∑
n K n is always divergent, since

Tr(K † K ) is infinite. Therefore the series expansion procedure
is not always a viable method to find the inverse of a matrix of
the type (I − A).

In practical numerical applications one does not have
to worry about modifying the structure constants according
to equation (G.5) since, for the cell geometries ordinarily
encountered in the applications (see the restrictions described
at the beginning of section 3), l convergence in the l-truncation

Figure 4. (Color online) K-edge z-polarized absorption cross section
for the σ state of the Se2 molecule, for various l values up to
lmax = 60, calculated by full inversion of the MS matrix (I − GT ).

procedure of the MS matrix shows up much earlier than
predicted by the onset of divergence in equation (G.4), written
with the unmodified structure constants Gi j

��′ . We already
found this out in GeCl4 [21], where in the first 20 eV an
lmax = 3 was sufficient to reproduce all spectral features, which
did not change by increasing l up to 10. Similar results were
found for other compounds.

In this context we did a more stringent test for the
Se2 diatomic molecule formed by two inter-penetrating
nonequivalent spheres with 40% overlap, with centers on the
z axis. We calculated the K-edge z-polarized cross section
for the σ state (m = 0) up to lmax = 60 in the energy range
−4.0 ∼ 20.0 eV, using the kernel K = GT and found a
convergent behavior for the lhs of equation (107) (see figure 4).

The fact that the full inversion of the MS matrix (I − GT )
is stable in this case up to lmax = 60 is clearly not of general
validity, although indicative of the behavior of the theory.
Going to higher values of lmax is not easy, because the lack of
Lebedev integration formulae for a number of surface points
�6000 prevents us from accessing such values. Already the
slight discrepancy of the lmax = 60 curve in figure 4 with the
previous ones (barely visible) is the sign that ∼6000 Lebedev
points are barely sufficient in this case. This kind of study for
other geometries and bigger clusters is under way.

5. Applications

Application of the present FP-MS theory to two cases
which, according to our experience, need significant non-MT
corrections for a good reproduction of the absorption data
(i.e. diatomic linear molecules and tetrahedrally coordinated
compounds) have already been presented in [22] for the K-
edge of Se2 and the Si L2,3 edge of crystalline SiO2 (α-
quartz). There it was shown that a good description of the
anisotropies of the potential leads to a substantial improvement
of the calculated absorption signal in comparison with the
experimental spectra.

In this section we present another application to the K-
edge absorption of Br2 and discuss a preliminary application
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of the NMT approach to the study of the performance of
two effective optical potentials, the Hedin–Lundqvist (HL)
potential and the Dirac–Hara (DH) in the case of a transition
metal.

It should be emphasized that all potentials used here
and in [22] are non-self-consistent, since the starting charge
density is obtained by mere superposition of atomic densities.
Therefore the agreement or disagreement with experiments
might change if a self-consistent charge density were used,
although from our experience the effect of this latter has
a minor impact on the spectra than the elimination of the
MT approximation. In any case, one of the motivations
for pursuing the FP-MS method was exactly the study of
the performance of the various models of optical potential
together with the effect of the self-consistent charge density,
once the geometrical approximation of the potential had been
eliminated. The application of the present real-space theory
to the generation of the self-consistent ground state density
using the well-known technique of contour integration in the
complex energy plane is under way.

In order to obtain the absorption spectra we start from the
well-known expression of the absorption cross section in terms
of the GF, given by

σtot(ω) = −8παh̄ω

×
∑

mc

Im
∫

〈φc
Lc
(r)|ε̂ · r|G(r, r′; E)|ε̂ · r′|φc

Lc
(r′)〉 dr dr′.

(122)

For more details and other spectroscopies we refer the reader
to [35]. We used all three forms of GF given by equations (93)–
(95). While the last two are numerically stable and give
almost coincident spectra, the first one shows occasionally
small but noticeable kinks in the calculated spectrum and
sometimes small deviations around maxima and/or minima of
the cross section compared to the other two. This is a known
phenomenon which is now exalted compared to the MT case,
where it was almost unnoticeable. It is due the fact that the
singularities of the S-matrix in the definition of the scattering
basis functions �̄(r) in equation (70) and those of T −1 in the
inverted MS matrix τ = (T −1 −G) do not compensate exactly.
Therefore, even though the three forms are formally equivalent,
from a computational point of view, form equation (93) is to be
avoided.

Figure 5, shows the experimental unpolarized K-edge
absorption cross section of the diatomic molecule Br2 [41]
in comparison with an NMT and an MT calculation as a
function of the photo-electron kinetic energy E referring to E0,
the true zero of the non-self-consistent molecular potential at
infinity. All spectra were normalized at a common energy point
between 20 and 30 eV. For the NMT case we partitioned the
space with 24 Voronoi polyhedra arranged on a BCC lattice:
two of them around the physical atoms and 22 empty cells
(EC) to cover the rest of the space where the density (and the
potential) are significantly different from zero. lmax was taken
equal to 4 in all polyhedra. We gave a small finite imaginary
part to the energy of the order of (∼0.02 eV) in order to be
able to use the same Green function expression for the cross
section equation (122) both for bound and continuum states. To

Figure 5. (Color online) K-edge unpolarized absorption cross
section for Br2 molecule, showing the comparison between the MT
and FP-MS calculations against the experimental data.

calculate the absorption spectrum, we used the real part of an
Hedin–Lundqvist (HL) potential and then convoluted the result
with a Lorentzian whose width is equal to the that of the core
hole (2.52 eV). We see that the agreement with experiment is
rather good. In contrast, the MT approximation of the potential
turns out to be rather poor.

We then present in figure 6 a preliminary application of the
NMT approach to assess the performance of the HL against
a DH potential, assuming that the losses are sufficiently well
described in both cases by the imaginary part of the HL self-
energy, in the case of HCP Co metal. As is well known, the
real part of the HL potential is composed of two terms: the
static Hartree–Fock (HF) exchange, known also as Dirac–Hara
(DH) exchange, coming from the constant part of the dielectric
function and the dynamically screened exchange–correlation
contribution (HLXC), originating from the ω-dependent part
(see appendix A of [42]).

This calculation (and other similar along the same line)
were performed without any adjustable parameter. In all
cases the number of atoms forming the cluster is about 140–
150, lying inside a sphere of about 7–8 Å, enough to obtain
spectral convergence in the presence of the complex part of the
potential. The charge density was obtained by superposition
of neutral atom charge densities, from which the Coulomb and
the exchange–correlation potential are calculated. In the case
of close-packed structure, this fact should not be an handicap.

By contour integral of Green’s function over the energy
range of the valence states, the Fermi energy was determined
to be around −10 eV with respect to E0 = 0, i.e. the zero
of the cluster potential at infinity. It serves to define the
local momentum of the photo-electron in the calculation of
the HL (DH) potential, but the calculated spectra are rather
insensitive to small variations of this quantity by 1–2 eV. No
self-consistency loop was attempted to find a self-consistent
charge. The core hole width was taken into account by adding
0.7 eV to the complex part of the potential.

Surprisingly enough, the comparison shows that the DH
potential gives overall better agreement with the experiments
than the HL one. A similar situation is found for other
transition metals and has been reported elsewhere [43]. Notice
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Figure 6. (Color online) Comparison between Co K-edge absorption calculated with complex HL (left) and DH (right) potentials with
experimental results.

that the same conclusion was drawn in [44] for Cu2MnM,
where M = Al,Sn, In, although in the MT approximation.

6. Conclusions

We have developed an FP-MS scheme which is a straightfor-
ward generalization of the usual theory with MT potentials and
implemented the code to calculate cross sections for several
spectroscopies, like absorption, photo-electron diffraction and
anomalous scattering, as well as bound states, by a simple
analytical continuation. The key point in this approach is the
generation of the cell solutions �L(r) for a general truncated
potential free of the well-known convergence problems of AM
expansion together with an alternative derivation of the MSE
which allows us to treat the matrices S and E as square,
with only one truncation parameter, given by the classical
relation lmax ∼ k Rb. The fact that the theory can work with
square S and E matrices is of the utmost importance, since
this feature allows the definition of the cell T matrix and its
inverse, recuperating in such way the possibility of defining
Green’s function and to treat a host of problems, ranging
from solids with reduced symmetry to randomly disordered
alloys in the context of the CPA, as mentioned in section 1.
In this way one can also show that the wavefunction and
Green’s function approach provide the same expression for
the absorption cross section for continuum states and real
potentials, through the application of the generalized optical
theorem (see appendix E). For transitions to bound states
the two methods are not equivalent, due to the different
normalization of continuum and bound states, unless one
normalizes to one the wavefunction for these latter. However,
this procedure, although feasible, is rather cumbersome (this
was one of the reasons for abandoning the MS method in
favor of the simpler linearized methods in band structure
calculations). Instead, Green’s function expression for the
cross section equation (122) can always be used, since it gives
the correct normalization in both cases simply by analytical
continuation. We have exploited this fact when calculating the
cross section for the Se2 and Br2 diatomic molecules.

Moreover, in the present paper we have been able to show
that the FP-MST converges absolutely in the lmax → ∞

limit (modulo a slight modification of the free propagator
matrix G which is practically unnecessary) in the sense that
the scattering path operator of the theory can be found in
terms of an absolutely convergent procedure in this limit.
We have thus given a firm ground to its use as a viable
method for electronic structure calculation and at the same
time have provided a straightforward extension of MST in
the muffin-tin (MT) approximation for the calculation of x-ray
spectroscopies. Also Quantum Chemistry calculations might
benefit from this method in that it avoids the use of basis
functions sets.

Finally it is worth mentioning that in giving a new scheme
to generate local basis functions for truncated potential cells,
we have provided an efficient and fast method for solving
numerically a partial differential equation of the elliptic type in
polar coordinates, which can also be used to solve the Poisson
equation in the whole space by the partitioning method.
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Appendix A. The Mathieu functions

For the convenience of the reader we give here a brief
account of the Mathieu functions. The solution of the three-
dimensional Mathieu’s equation (24) of the text is obtained by
separation of variables

ψ(x, y, z) = fx(x) f y(y) fz(z). (A.1)

in terms of functions f solutions of the one-dimensional
Mathieu’s equation [27]

d2 f (r)

dr 2
= (−a + 2q cos 2r) f (r). (A.2)
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Table A.1. First few eigenvalues of Mathieu functions for different q values.

Parity

Even Odd

Period π 2π π 2π

q = 0.01 a0 = −4.999 95 × 10−6 a1 = 1.009 99 b2 = 3.999 99 b1 = 0.989 988
a2 = 4.000 04

q = 0.02 a0 = −1.999 91 × 10−5 a1 = 1.019 95 b2 = 3.999 97 b1 = 0.979 95
a2 = 4.000 17

q = 0.03 a0 = −4.499 56 × 10−5 a1 = 1.029 89 b2 = 3.999 93 b1 = 0.969 888
a2 = 4.000 37

q = 0.04 a0 = −7.9986 × 10−4 a1 = 1.0398 b2 = 3.999 87 b1 = 0.959 801
a2 = 4.000 67

q = 0.05 a0 = −1.249 66 × 10−3 a1 = 1.049 69 b2 = 3.999 79 b1 = 0.949 689
a2 = 4.001 04

q = 0.1 a0 = −4.994 54 × 10−3 a1 = 1.098 73 b2 = 3.999 17 b1 = 0.898 766
a2 = 4.004 16

q = 0.2 a0 = −1.991 33 × 10−2 a1 = 1.194 87 b2 = 3.996 67 b1 = 0.795 124
a2 = 4.016 58

q = 0.3 a0 = −4.4566 × 10−2 a1 = 1.288 32 b2 = 3.9925 b1 = 0.689 166
a2 = 4.037 06

q = 1 a0 = −0.455 139 a1 = 1.859 11 b2 = 3.917 02 b1 = −0.110 249
a2 = 4.3713

q = 2 a0 = −1.513 96 a1 = 2.3792 b2 = 3.672 23 b1 = −1.390 68
a2 = 5.172 67

q = 5 a0 = −5.800 05 a1 = 1.858 19 b2 = 2.099 46 b1 = −5.790 08
a2 = 7.449 11

q = 10 a0 = −13.937 a1 = −2.399 14 b2 = −2.382 16 b1 = −13.9366
a2 = 7.717 37

A solution of equation (A.2) having period π or 2π is of
the form

f (r) =
∞∑

m=0

(Am cos mr + Bm sin mr) (A.3)

where B0 can be taken as zero. If the above expression is
substituted into equation (A.2) one obtains

∞∑

m=−2

[(a − m2)Am − q(Am−2 + Am+2)] cos mr

+
∞∑

m=−1

[(a − m2)Bm − q(Bm−2 + Bm+2)] sin mr = 0

(A.4)

with A−m = B−m = 0 if m > 0. Equation (A.4) can be
reduced to one of four simpler types:

f0(r) =
∞∑

m=0

A2m+p cos(2m + p)r, p = 0 or 1

(A.5)

f1(r) =
∞∑

m=0

B2m+p sin(2m + p)r, p = 0 or 1.

(A.6)
If p = 0, the solution is of period π ; if p = 1, the
solution is of period 2π . f0 is an even solution, and f1 is an
odd solution. The recurrence relations among the coefficients
of these basic solutions are easily obtained from the general
relations equation (A.4). For even solutions of period π we
find

a A0 − q A2 = 0 (A.7)

(a − 4)A2 − q(2A0 + A4) = 0 (A.8)

(a − m2)Am − q(Am−2 + Am+2) = 0, m � 3 (A.9)

and of period 2π

(a − 1)A1 − q(A1 + A3) = 0 (A.10)

(a − m2)Am − q(Am−2 + Am+2) = 0, m � 3. (A.11)

For odd solutions of period π

(a − 4)B2 − q A4 = 0 (A.12)

(a − m2)Bm − q(Bm−2 + Bm+2) = 0, m � 3 (A.13)

whereas for period 2π

(a − 1)B1 + q(B1 − B3) = 0 (A.14)

(a − m2)Bm − q(Bm−2 + Bm+2) = 0, m � 3. (A.15)

It is convenient to separate the characteristic values a into
two major subsets:

a = ar , associated with even periodic solutions

a = br , associated with odd periodic solutions

where r describes the index of the eigenstate. Table A.1
gives the first three eigenvalues associated with even periodic
solutions and the first two associated with odd periodic
solutions (b0 = 0), for some selected values of q . They
can serve to generate the Mathieu functions using the above
recurrence relations to determine the coefficients in the
solutions (A.5) and (A.6).
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Appendix B. Asymptotic behavior of KKR structure
factors

For ν → ∞ through real positive numbers (in practice for
ν � |z|), the other variables being fixed, one has [27]

Jν ≈
(

1

2πν

)1/2( ez

2ν

)ν
;

−iH ±
ν ≈ ±

(
2

πν

)1/2( ez

2ν

)−ν (B.1)

where e is the Neper number. Remembering that

jn(z) =
√
π

2z
Jn+1/2(z); h±

n (z) =
√
π

2z
H ±

n+1/2(z)

(B.2)
we find for the asymptotic behavior of the spherical Bessel and
Hankel functions

jn(z) ≈ zn

√
2

en+1/2

(
1

2n + 1

)n+1

;

−ih±
n (z) ≈

√
2

zn+1

1

en+1/2
(2n + 1)n.

(B.3)

We need to find an upper limit for Gi j
L L ′ given by

Gi j
L L ′ = −4π ik

∑

L ′′
il−l′+l′′ C(L, L ′; L ′′)h+

l′′ (ρ)YL ′′(ρ̂) (B.4)

where ρ = k Ri j , ρ̂ = R̂i j and C(L, L ′; L ′′) are the Gaunt
coefficients. To establish an upper limit for this expression
when l is fixed and l ′ � ρ we replace each |h+

l′′ (ρ)| in the
sum by its maximum value |h+

l+l′ (ρ)|, use the asymptotic value
in equations (B.3) and the relation

∑
L ′′ C(L, L ′; L ′′)YL ′′(ρ̂) =

YL(ρ̂)YL ′(ρ̂) to obtain

|Gi j
L L ′ | � 4πk|h+

l+l′ (ρ)|
∑

L ′′
|C(L, L ′; L ′′)YL ′′(ρ̂)|

≈ 4πk|h+
l+l′ (ρ)|

∣
∣
∣
∣

∑

L ′′
C(L, L ′; L ′′)YL ′′(ρ̂)

∣
∣
∣
∣

= 4πk|h+
l+l′ (ρ)||YL(ρ̂)YL ′(ρ̂)| � [(2l + 1)(2l ′ + 1)]1/2

×
√

2

ρl+l′+1

k

el+l′+1/2
[2(l + l ′)+ 1]l+l′ (B.5)

since |YL(ρ̂)| �
√
(2l + 1)/(4π). Notice that the approxima-

tion
∑

L ′′ |C(L, L ′; L ′′)YL ′′(ρ̂)| ≈ |∑L ′′ C(L, L ′; L ′′)YL ′′(ρ̂)|
entails only errors O(1) in all l variables, as can be verified by
explicit calculation, and therefore completely negligible with
respect to the power behavior of the rest of the factors. In
any case, since

∑
L ′′ |C(L, L ′; L ′′)YL ′′(ρ̂)| � [(2l + 1)(2l ′ +

1)]1/2/(4π)
∑

L ′′(2l ′′ + 1), at the cost of introducing a non-
influential extra factor [2(l + l ′) + 1]2 in equation (B.5) we
would get a rigorous inequality. This expression is obviously
also valid for l � ρ.

Under the same conditions, assuming l ′ � l we derive

|J i j
L L ′ | � 4π | jl′−l(ρ)||YL(ρ̂)YL ′(ρ̂)| � [(2l + 1)(2l ′ + 1)]1/2

× ρl′−l

√
2

el′−l+1/2 1

[2(l ′ − l)+ 1]l′−l+1
. (B.6)

The inequalities equations (B.5) and (B.6) can be used to
obtain other useful inequalities used throughout the paper. For
example, for fixed l, using again equations (B.3), one obtains

|Gi j
L L ′ JL ′(r j )| �

(
r j

Ri j

)l′ k

(k Ri j)l+1
[2(l ′ + l)+ 1]l

×
√

2l + 1

4π
e−l (B.7)

implying that the series H̃ +
L (ri) = ∑

L ′ Gi j
L L ′ JL ′(r j ) is

absolutely and uniformly convergent in the angular domain.
The uniform convergence comes from the application of the
Weierstrass criterion (see section 3.34, page 49 of [40]).

Similarly one finds

|J io
L L ′ H̃ +

L ′(ro)| �
(

Rio

ro

)l′+1 k

(k Rio)l+1
[2(l ′ − l)+ 1]l

×
√

2l + 1

4π
e−l (B.8)

showing that the series H̃ +
L (ri ; κ) = ∑

L ′ J io
L L ′ H̃ +

L ′(ro; κ) is
also absolutely and uniformly convergent if (ro > Rio).

Along the same lines we can estimate an upper bound
for the atomic T -matrix for l, l ′ � k Rb. We find from
equation (42) to first order

TL L ′ =
∫ Rb

0
JL ′(r)V (r)ψL (r) d3r

=
∑

L ′′ L ′′′
C(L ′, L ′′; L ′′′)

∫ Rb

0
r 2 jl′(kr)VL ′′′(r)RL ′′ L(r) dr

≈
∑

L ′′
C(L ′, L; L ′′)

∫ Rb

0
r 2 jl′(kr)VL ′′(r) jl(kr) dr (B.9)

where the last step follows from the fact that, under the
above assumptions, RL ′ L ≈ jlδL L ′ . Taking into account that
C(L ′, L; L ′′) ≈ 1/

√
4πO(1) for all L values and using again

equations (B.3) we obtain

|TL L ′ | � 4ll ′
∫ Rb

0
r 2| jl′(kr)||V|l−l′ |(r)|| jl(kr)| dr

≈ 4ll ′kl+l′ el+l′+1

(2l + 1)l+1(2l ′ + 1)l′+1

×
∫ Rb

0
r l+l′+2|V|l−l′ |(r)| dr

� Zeff

k2

4ll ′

l + l ′ + 2

(k Rb)
l+l′+2el+l′+1

(2l + 1)l+1(2l ′ + 1)l′+1
(B.10)

with the understanding that Vl ≡ Vl0, assuming that |Vl(r)| �
2Zeff/r in atomic units and that |Vl(r)| is decreasing with l.

Based on the above inequalities we easily obtain

|Gi j
L L ′ TL L ′ | � 8

√
2e1/2 Zeff Rb

(ll ′)3/2

l + l ′ + 2

×
(

Rb

Ri j

)l+l′+1
(2l + 2l ′ + 1)l+l′

(2l + 1)l+1(2l ′ + 1)l′+1
. (B.11)

Specializing to the case where l is fixed and l ′ is running, we
also find

|Gi j
L L ′ TL ′L ′ | � 4

(ll ′)1/2l ′

l ′ + 1
Zeff

× (k Rb)
2l′+2

(k Ri j)l+l′+1

e2l′+1

el+l′+1/2

(2l + 2l ′ + 1)l+l′

(2l ′ + 1)2l′+1
(B.12)
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which is useful in discussing questions related to the
convergence of MST.

Finally we note that all the above inequalities and
convergence conditions remain valid for complex arguments
ρ, provided it is replaced by its module |ρ|.

Appendix C. Surface identity for scattering states

In the case of short range potentials (i.e. potentials that behave
like 1/r 1+ε with positive ε as r → ∞) the Lippmann–
Schwinger equation for scattering states at energy E = k2

ψ(r; k) = φ0(r; k)+
∫

dr′ G0(r−r′; k)V (r′)ψ(r′; k) (C.1)

is a consequence of the Schrödinger equation

(∇2 + E − V (r))ψ(r; k) = 0 (C.2)

together with the relations (φ0(r; k) ≡ eik·r)

(∇2 + E)φ0(r; k) = 0 (C.3)

(∇2 + E)G0(r − r′; k) = δ(r − r′). (C.4)

Starting from equation (C.1), we derive the identity
∫




dr′ [G0(r − r′; k)V (r′)− δ(r − r′)]ψ(r′; k) = −φ0(r; k)

(C.5)
where 
 indicates the whole space. Using equation (C.4) to
replace the delta function, and the Schrödinger equation (C.2)
to eliminate V (r′) we obtain
N+1∑

j=1

∫


 j

{G0(r − r′; k)(∇2 + E)ψ(r′; k)

− ψ(r′; k)(∇2 + E)G0(r − r′; k)} dr′
j = −φ0(r; k)

where we have decomposed the whole space as 
 =∑N+1
j=1 
 j , such that 
N+1 ≡ 
o = C∑N

j=1
 j .
Transforming to surface integrals by application of the

Green’s theorem
N+1∑

j=1

∫

S j

[G0(r − r′; k)∇ψ(r′; k)

− ψ(r′; k)∇G0(r − r′; k)] · n′
j dσ ′

j = −φ0(r; k). (C.6)

We now observe that the surface integral over the surface
SN+1 of the volume 
N+1 ≡ 
o has two contributions, one
coming from the surface So of

∑N
j=1
 j , the other one S∞

o at
infinity, as the limit as R → ∞ over the surface of a sphere
SR

o , of radius R. This latter is easily calculated on the basis
of the asymptotic behavior of ψ(r; k) in equation (41) and the
expansion (36) and gives exactly −φ0(r; k), canceling the rhs
term in equation (C.6). Therefore we recover the identity (32)
of section 3.1:

N∑

j=1

∫

S j

{G0(r − r′, k)∇ψ(r′; k)

− ψ(r′; k)∇G0(r − r′; k)} · n′
j dσ ′

j

=
∫

So

{G0(r − r′, k)∇ψ(r′; k)

− ψ(r′; k)∇G0(r − r′; k)} · n′
O dσ ′

O (C.7)

Appendix D. The generalized optical theorem

For the convenience of the reader we give here a proof of
equation (79) in the case where T̄ o ≡ 0, i.e. when empty cells
cover the volume 
o up to the point at which the asymptotic
behavior in equation (41) begins to be valid. We start by
observing that

∫

dk̂ I i
L (k)[I j

L ′(k)]∗ = J i j
L L ′

k

π
(D.1)

so that, using the relation equation (77), we find
∫

dk̂ Bi
L(k)[B j

L ′(k)]∗ =
∑

mn

∑

��′
τ im

L�′ J mn
��′(τ

ni
�′ L ′)

∗ k

π
(D.2)

where we have used the symmetry of τ . Based on the relations
equations (102), (103) and (105), valid at any energy, and due
to the reality of the matrices K , N and J for a real potential,
we can write

τ = k−1[K − N + iJ ]−1 (D.3)

so that the rhs of equation (D.2) becomes

k

π
{τ Jτ ∗}i j

L L ′ = 1

π

1

2i
{τ ∗ − τ }i j

L L ′ = − 1

π
Im τ i j

L L ′ (D.4)

in keeping with equation (79).

Appendix E. Wavefunction and GF equivalence for
absorption cross section

In the independent-electron approximation, the core level
photo-electron diffraction (PED) cross section for the ejection
of a photo-electron along the direction k̂ and energy E = k2

from an atom situated at site i is given by [35]

dσ

dk̂
= 8π2αh̄ω

∑

mc

|〈�ψ(ri ; k)|ε̂ · ri |φc
Lc
(ri )〉|2. (E.1)

Here � is the time-reversal operator, ε̂ the polarization of
the incident photon and φc

Lc
(ri ) the initial core state of

angular momentum Lc (we neglect for simplicity the spin–orbit
coupling, which can be easily taken into account). Due to the
localization of the core state, we need only the expression of
the continuum scattering state in the cell of the photo-absorber,
given by

ψ(ri ; k) =
∑

L

Bi
L(k)�̄L (ri) (E.2)

so that

dσ

dk̂
= 8π2αh̄ω

∑

mc

∣
∣
∣
∣
∣

∑

L

MLc L (E)B
i
L(k)

∣
∣
∣
∣
∣

2

(E.3)

where Bi
L(k) is given by equation (77) and we have defined the

atomic transition matrix element

MLc L (E) =
∫


i

drφc
Lc
(r)ε̂ · r�̄L (r). (E.4)
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The total absorption cross section, in the case of real
potentials, is obtained by integrating the PED cross section
over all directions of photo-emission:

∫

dk̂
dσ

dk̂
= 8π2αh̄ω

∑

mc

∫

dk̂

∣
∣
∣
∣
∣

∑

L

MLc L (E)B
i
L(k)

∣
∣
∣
∣
∣

2

= −8παh̄ω
∑

mc

∑

L L ′
MLc L(E) Im τ ii

L L ′ MLc L ′ (E.5)

by application of the optical theorem (79). This is exactly the
form that one would obtain starting from equation (122) and
using the expression (93) for the GF.

Appendix F. Exploitation of point symmetry

In a cluster (to which we shall also refer as a molecule), point
symmetry can be used to advantage to simplify the problem
and reduce the size of the MS matrix. Specifically we consider
the case where the cluster remains invariant under a finite group
of transformations G relative to the molecular center Ro. This
group has a finite number of finite-dimensional irreducible
representations (irreps) � j ( j = 1, 2, . . . , g). Due to the
symmetry, the cluster will consist of P groups of equivalent
atoms, transforming into one another under the operations of
the group; and for each group p = 1, 2, . . . ,P , there are Np

atoms labeled by i p. If N is the total number of atoms in the
cluster, then N = ∑P

p=1 Np .
Under these assumptions there exists a unitary transfor-

mation C that block diagonalizes the MS matrix according to
the irreps. For each value of the angular momentum index
l, this transformation is labeled by the angular projection m
and the site i p on the one side, and on the other the irrep,
the row ρ of the irrep and a further index n that distinguishes
independent orthogonal symmetrized basis functions with the
same l. The matrix elements of C are easily obtained by
applying the projection operator

∑
R M

� j
ρρ (R)PR to a spherical

harmonic function Ylm(r̂i p )θ(Rb − ri p) centered on the site i p

and defined on the surface of the bounding sphere Rb of the
cell 
i p Here PR is the generic operation belonging to the
group G corresponding to the coordinate transformation R, and
M
� j
ρρ (R) is the matrix element corresponding to R in the matrix

representation of irrep � j of the group, ρ labeling the row of
the irrep. As usual in group theory [45] the effect of PR on the
function f (r) is given by f (R−1r). In this way, if the result
is not zero, one generates a symmetrized spherical harmonic
function given by

K
�
ρ

j ,p
ln (r̂p) ≡

∑

R

M
� j
ρρ (R)PRYlm(r̂i p)

=
∑

R

M
� j
ρρ (R)

∑

μ

Dl
μm(R)Ylμ(r̂i ′

p
)

=
∑

m,i p

C
�
ρ
j ,i p

ln,m Ylm(r̂i p ) (F.1)

where Dl
μm(R) is the Wigner rotation matrix corresponding

to the transformation R [45] and i ′
p = Ri p. Due to the

orthogonality of the basis functions
∫

Ylm(r̂i p)Ylm′ (r̂i ′
p
) d
 = δmm′δi pi ′

p

∫

K
�
ρ

j ,p
ln (r̂p)K

�
ρ′
j ′ ,p

l′n′ (r̂p) d
 = δll′δnn′δ� j� j ′ δρρ′

(F.2)

we obtain CC̃ = C̃C = I , i.e.
∑

m,i p

C
�ρ,i p

ln,m C
�′ρ′

,i p

l′n′,m = δll′δnn′δ��′δρρ′

∑

�ρ

∑

n

C
�ρ,i p

ln,m C
�ρ,i ′

p

ln,m′ = δmm′δi p i ′
p

(F.3)

where for simplicity we have dropped the index j from the
symbol � of the irreps.

Now, if M ≡ Mi j
L L ′ ≡ (T −1 − G)i j

L L ′ is the MS matrix in
the non-symmetrized site and angular momentum indices, its
symmetrized version is given by Ms = CM C̃. Therefore for
any representation � we have, putting for short � = (l, n) and
remembering that L ≡ (l,m):

T �,p
�,�′ =

Np∑

i p

∑

m,m′
C
�,i p

�,L T
i p

L ,L ′C
�,i p

�′,L ′ (F.4)

G�,pq
�,�′ =

Np∑

i p

Nq∑

iq

∑

m,m′
C
�,i p

�,L G
i piq

L ,L ′C
�,iq

�′,L ′ . (F.5)

Here T �,p
s describes total scattering power of group p and

G�,pq
s is the symmetrized matrix of the KKR structure

factors. The presence of an outer sphere contribution J T̄ o J
is treated on the same footing and contributes C J T̄ o J C̃ ≡
C J C̃C T̄ oC̃C J C̃ ≡ JsT̄ o

s Js for each representation �. Since the
outer sphere is centered at the origin of the cluster, it has no
partner spheres equivalent to itself.

All these matrices are labeled only by the groups of
equivalent atoms (prototypical atoms), the angular momentum
l and possibly the index n mentioned above, realizing a
sizable reduction in dimensions. Notice that, since the
molecular Hamiltonian is invariant under the operations of G,
the symmetrized matrix elements do not depend on the row
ρ of the representation �. Moreover, in order to find the
symmetrized T -matrix relative to an equivalent group of atoms,
we do not need to calculate T

i p

L L ′ for all sites in the group, since
these are related to one another by the relation

T
i ′

p

L L ′ =
∑

μμ′
Dl

mμ(R)T
i p

lμl′μ′ Dl′
m′μ′(R) (F.6)

where, as before, i ′
p = Ri p. This relation is a consequence

of the invariance of the potential and the T -matrix T i p(r̂, r̂′)
under the operations of the group G. Specifically

V
i p

L L ′ =
∫

YL (r̂)V i p(r, r̂)YL ′(r̂) dr̂

=
∫

YL (r̂)V i ′
p(r, Rr̂)YL ′(r̂) dr̂

=
∫

YL (R
−1r̂)V i ′

p(r, r̂)YL ′(R−1r̂) dr̂

= Dl
μm(R)V

i ′
p

lμl′μ′ Dl′
μ′m′(R)
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valid also for the matrix elements T
i p

L L ′ = ∫
YL (r̂)T i p(r̂, r̂′)YL ′

(r̂′) dr̂ dr̂′. Notice that the transformation and symmetrization
properties are the same for T and T −1, so we can act directly
on this latter.

In the MT case the T matrices are angular momentum
diagonal and m and site independent within a set of equivalent
atoms, so that

T �,p
�,�′ = T p

l

Np∑

i p

∑

m

C
�,i p

�,L C
�,i p

�′,L

= T p
l δ�,�′ . (F.7)

The group T p-matrix can also be calculated directly from
the symmetrization of the radial part of the basis function
RL L ′(ri p), which transforms as T in equations (F.4) and (F.6).
Even though the number and type of operations to perform
are exactly the same as for obtaining T p, in this case there is
the added advantage of generating a symmetrized form of the
scattering wavefunction, needed for example to calculate the
absorption or photo-emission cross section.

The symmetrization of the local wavefunction in a group
of equivalent atoms for an irrep � is obtained by observing that
the following function ψ(rp) is invariant under any operation
of the group

ψ(rp) =
∑

i p

∑

L L ′
A

i p

L R
i p

L ′ L(ri p)YL ′(r̂i p)

≡ 〈A|R|Y 〉
= 〈A|C̃CRC̃C|Y 〉
=
∑

��′
A�,p� R�,p�′�(rp)K

�,p
�′ (r̂p) (F.8)

whereby
A�,p� =

∑

mi p

C
�,i p

�,m A
i p

lm

R�,p��′(rp) =
Np∑

i p

∑

m,m′
C
�,i p

�,L R
i p

L ,L ′(rp)C
�,i p

�′,L ′ .

Inside the MT sphere X�,p
�′�(rp) ≡ r R�,p�′�(rp) is solution

of the symmetrized equation (14)

∑

�′′

[(
d2

dr 2
+ E − l(l + 1)

r 2

)

δ��′′ − V p
��′′(r)

]

X�,p
�′′�′(r)

= 0 (F.9)

where we have written for simplicity r for rp and V p
��′′(r) is

given by

V �1,p
�,�′ (r) =

Np∑

i p

∑

m,m′
C
�1,i p

�,L V
i p

L ,L ′(r)C
�1,i p

�′,L ′ (F.10)

�1 being the identical representation of the group G. Near the
origin X�,p

��′ , (r) ∼ r jl(kr)K �,p
� (r̂p)δ��′ .

Across the truncated boundary, we instead use the
symmetrized version of equation (1), so that putting
P�,p
� (rp) = r��,p

� (rp) and dropping again the index p

[
d2

dr 2
+ E − V (r, r̂)

]

P�
�(r, r̂) = 1

r 2
L̃2 P�

�(r, r̂) (F.11)

where

L̃2 P�
�(r, r̂) =

∑

�′
l ′(l ′ + 1)r R��′�(r)K

�
�′(r̂) (F.12)

and we use starting values given by equation (F.9).
Equation (F.11) is obtained from equation (1) by applying on
the left the projection operator

∑
R M

� j
ρρ (R)PR , taking into

account that V (ri p ) = V (R−1ri ′
p
).

In terms of R���′(r) is then possible to define the

symmetrized version of the matrices E
i p

L L ′ and S
i p

L L ′ as

E p
��′ = (R p

b )
2W [−iκh+

l , R p
��′ ] (F.13)

S p
��′ = (R p

b )
2W [ jl, R p

��′ ] (F.14)

and derive the symmetrized equivalent of all the quantities
introduced towards the end of section 3.1. In particular the
amplitudes B p

�(k) are solutions of the symmetrized MSE:
∑

q�′
[(T −1)

�,p
�,�′δpq + G�,pq

�,�′ ]Bq
�′(k) = I p

�(k) (F.15)

where I p
�(k) = ∑

mi p
C
�,i p

�,m I
i p

lm(k). Assuming that the photo-
absorber is located in cell 
o at the origin of the coordinates
Ro, the symmetrized PED cross section for the final state irrep
� with degeneracy d(�) takes the form

dσ�

dk̂
= 8π2αh̄ω d(�)

∑

nc

∣
∣
∣
∣
∣

∑

�

M�c�
�c�

(E)Bo
�(k)

∣
∣
∣
∣
∣

2

(F.16)

where the atomic dipole transition matrix element

M�c�
�c�

(E) =
∫


o

φ
�c
�c
(r)D�d (r)�̄�

�(r) dr (F.17)

obeys the selection rules of the Wigner–Eckart theorem [45] for
the finite group G. We have assumed that the dipole operator
transforms according to the irrep �d.

Appendix G. Finiteness of Tr(K†
s Ks)

In this appendix we show that Tr(K †
s Ks) is finite. Starting

from equation (114), we partition the space and the potential
in the way described at the beginning of section 3.1 and define
a new kernel K̃ that coincides with the kernel Ks for r and r′
in different cells and vanishes identically when r and r′ happen
to be in the same cell.

For this new kernel, Tr(K̃ † K̃ ) is finite (�N < ∞)
for an even larger class of potentials than that defined by
equation (114) so that, rewriting K̃ (r, r′) in operator notation,
we have

N �
∫

dr 〈r|K̃ † K̃ |r〉

=
∫ ∫ ∫

dE dE ′ dE ′′ ∑

L L ′ L ′′

∫

dr 〈r|JL (E)〉

× 〈JL(E)|K̃ †|JL ′(E ′)〉〈JL ′ (E ′)|K̃ |JL ′′(E ′′)〉〈JL ′′ (E ′′)|r〉
=
∫ ∫

dE dE ′ ∑

L L ′
|K̃L L ′(E, E ′)|2 �

∑

L L ′
|K̃L L ′(E, E)|2

(G.1)
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taking into account that the functions JL(E)(r) =
(k/π)1/2 jl(kr)YL(r̂), with the normalization to one state per
rydberg, form a complete orthonormal set.

Now it is easy to see that the matrix K̃L L ′ is the asymptotic
form of the kernel Ks in equation (118) for high values of the
indices L L ′, since

K̃L L ′(E, E) =
∑

i �= j

∫


i

dri JL(E)(ri )|Vi(ri )|1/2vi (ri )

×
∫


 j

dr′
j G+

0 (ri−r′
j+Ri j ; k)|Vj(r′

j )|1/2v j (r′
j )JL(E)(r′

j )

=
∑

i �= j

∑

��′

∫


i

dri JL(E)(ri )|Vi(ri )|1/2vi (ri )J�(E)(ri )G̃
i j
��′

×
∫


 j

dr j J�(E)(r′
j )|Vj(r′

j )|1/2v j (r′
j )JL(E)(r′

j )

∼
∑

i �= j

∑

��′
[T i

L�]1/2G̃i j
��′ [T i

�′L ′ ]1/2 (G.2)

the last line following by the fact that asymptotically, when
L�, L ′�′ � k Ri

b (∀ i),

[T i
L�]1/2 ∼

∫


i

dri JL(E)(ri )|Vi(ri )|1/2vi (ri )J�(E)(ri ).

(G.3)
Notice also that we have used the two-center expansion for the
free Green’s function

G+
0 (r − r′; k) = J�(E)(ri)G̃

i j
��′ J�(E)(r′

j) (G.4)

which might diverge if ri + r j > Ri j , e.g. for neighboring
cells. A similar problem is encountered when formulating the
variational derivation of MST (see, for example, section 6.5.3,
page 140 and following of [13]). One way to solve it is to use
the displaced cell approach [13], whereby one can write

K̃L L ′(E, E)

=
∑

i �= j

∑

�--

{∑

��′
[T i

L�]1/2 J��-- (b)G�-- �
′(Ri j + b)[T i

�′L ′ ]1/2

}

(G.5)

provided that |Ri j + b| > Ri
b + R j

b and the sums inside
the curly brackets be performed first. Here J��-- (b) is the
usual translation operator in MST, given by equation (51) with
the vector Ri j replaced by the vector b. The tilde over the
symbol Gi j

��′ in equation (G.4) was meant to be a reminder
to use this procedure. Notice that the vector b depends only
on the geometry of the partition of the space in cells and is
independent of l.

In this way the expression equation (G.5) is always
convergent and is such that

∑
L L ′ |K̃L L ′(E, E)|2 = Tr(K̃ † K̃ )

is finite. Consequently Tr(K †
s Ks) is also finite.
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